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Abstract

Computational models have been described as exceptionally adept at examin-

ing the complex relationships of human and crowd behaviour, with a significant

portion dedicated to investigating spatial behaviour in defined environments.

Within this context, this paper presents an agent-based model (ABM) for simu-

lating activity in public spaces at the level of the individual user. Although other

ABMs of individuals’ spatial activity exist, they are often found to simulate spe-

cific building-related activities, and fewer still are found to examine activity in

public spaces, in a systematic manner. This research provides a generalized for-

malization of human spatial behaviour incorporating stationary activities and

social interaction within a 3D environment, and is presented using a widely

accepted framework for describing ABM, the Overview, Design Concepts, and

Details (ODD) protocol. A sample study using a synthetic environment is used

to demonstrate applicability, and the model is tested extensively to establish ro-

bustness. Furthermore, model output is compared to observed activity patterns

in other studies of similar spaces, and simulated spatial patterns of activity are

found to match those observed in real-world scenarios, providing insight into

the dynamics of the processes, and highlighting the potential of this approach

for studying the complexities of human spatial behaviour.

Keywords: Agent-based modelling, Public space, Computer simulation, 3D,

ODD model description

Email address: k.cheliotis@ucl.ac.uk (Kostas Cheliotis)

Preprint submitted to Computers, Environment and Urban Systems February 13, 2020



1. Introduction

Human spatial behaviour is a process the majority of people engage in au-

tomatically and often take for granted in their every day life, constantly taking

into account stimuli from multiple sources and adjusting their behaviour accord-

ingly, often subconsciously. Aspects that can affect one’s behaviour in space may

include their own needs and requirements, their current comfort, the existence

and behaviours of others around them, and the opportunities and constraints

presented by the layout of the physical environment around them, among oth-

ers. As such, human spatial behaviour has been approached through multiple

research disciplines, each examining a particular aspect and its effect on the

resulting behaviour.

The inter-relationship between the physical environment and human spatial

behaviour in particular is one of the foci (if not the main one) of architectural

and urban design; In the design profession, practitioners shape physical environ-

ments (be it buildings or outdoor urban spaces) in such a way as to accommodate

human spatial behaviour as best as possible with regard to the space’s intended

use. This process depends on designers’ skill and expertise on translating form

and physical layout into expected user activity and anticipating users’ needs as

best as possible, and often relies on existing knowledge of how people have used

space in similar situations, extrapolating for the needs of the current design.

Such specific information about how people have used space is usually cap-

tured through a process called ’post occupancy evaluations’, performed both for

buildings (Hadjri & Crozier, 2009) as well as urban public spaces (Whyte, 1980;

Gehl Architects, 2004). Post occupancy evaluations help designers understand

how a space is actually used by its inhabitants/users, often by recording activity

in a space through surveys in order to identify patterns and highlight any issues

with the final produced design.

In addition to providing information on how a particular space is used, post

occupancy evaluations can further offer some additional insights into the driv-

ing characteristics of human spatial behaviour, and help build an archive of
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knowledge on human spatial behaviour. More specifically, they can provide a

better understanding on how people use space in general, both in regard to the

physical environment, as well as the way people interact with one-another in

space. For example, one such instance of human interaction in public spaces is

the largely accepted axiom in urban design which broadly states that human

activity at adequate capacity in a public space is in itself an attractor for other

people to engage in activities in that same space. This has been observed and

stated in multiple cases: Jacobs (1961, p. 45) writes: ”Large numbers of people

entertain themselves, off and on, by watching street activity”. Whyte (1980, p.

33) notes: ”All things being equal, ... where pedestrian flows bisect a sittable

space, that is where people will most likely sit”. Similarly and more succinctly,

Gehl (1987, p. 25) observes that ”people come where people are”.

However, one important point to highlight here is the fact that one of the

most basic functions of any product of spatial design, its use by its occupants,

is often not able to be fully investigated during the design process, but rather

only after the design is finished and delivered to its users. Therefore, although

observations on space use have built a significant archive of human spatial ac-

tivity, this knowledge often remains largely empirical. Furthermore, the above

mentioned observations on the attractiveness of crowds in public space highlight

another important characteristic of human spatial co-interaction, the fact that

human activity in space (and especially public spaces) demonstrates highly com-

plex behaviours, often exhibiting non-linear relationships, with the behaviour

of any one individual affecting and at the same time being affected by the be-

haviours of others in the space space. As such, both the process of capturing such

information as well as the fact that observed behaviours demonstrate complex

inter-relationships pose significant limitations for the systematic investigation

of human spatial behaviour.

One approach that shows considerable promise in overcoming such limita-

tions is computational simulations, as simulations can provide us with ”artifi-

cial laboratories” to test ideas and hypotheses about phenomena which prove

to be ”wickedly” complex in the real world (Gilbert, 2007). A specific ap-
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proach in computational simulations that is highly relevant here is agent-based

models (ABMs), in which ”a system is modeled as a collection of autonomous

decision-making entities called agents. Each agent individually assesses its situ-

ation and makes decisions on the basis of a set of rules” (Bonabeau, 2002), and

could therefore be quite applicable in capturing the complex nature of human

interaction in public spaces.

Therefore the development of an ABM that captures public space use may

help provide a controlled environment to better understand human spatial ac-

tivities as they take place in the real-world, by allowing us to explore the dy-

namics and processes that take place in interactions between individuals, as well

as interactions between individuals and the environment. To this end, this pa-

per presents the development and application of an ABM for simulating public

space use at the level of the individual user. Existing computational approaches

to spatial design and behaviour are discussed in section 2 with recent trends in

computational simulation in architectural and urban design, and limitations of

existing approaches are identified. The model is then described in detail using

a widely used protocol for communicating ABMs in section 3, followed by a dis-

cussion on testing the robustness of the model as well as presenting the model’s

suitability for experimentation in section 4, along with an application of the

model to a sample open urban space as a proof of concept, to demonstrate its

relevance. Section 5 concludes with a discussion of the results and an outline of

future work for the model.

2. Computational models of space use in architectural and urban de-

sign

This paper discusses a methodological approach to capturing and examining

human spatial behaviour and space use as it takes place within well defined

spatial environments. Hillier describes this concept of human spatial behaviour

as the generic function, defining it as:

the spatial implications of the most fundamental aspects of human
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use of space, that is, the fact of occupation and the fact of movement.

(Hillier, 2007)

It is important to clarify here that space use does not necessarily refer to

a specific set of activities dictated by a building’s or space’s functional pro-

gramme, but rather to the fundamental aspect of human spatial activity, that

of being in space. Furthermore, when examining space use within the context of

a well defined (i.e. designed) space, it is expected that the spatial configuration

will have some effect on spatial activity. Therefore, if a study of space use is

conducted within the scope of architectural or urban design, it follows that part

of the study’s focus is also placed on the effect a design decision might have on

space use.

Space use in designed spaces is most often investigated after the design

process has completed, through post-occupancy evaluations (Zimring & Reizen-

stein, 1980), which examine how a produced space is actually used. Such studies

have been performed for buildings and indoor environments (Hadjri & Crozier,

2009), as well as outdoor spaces, such as urban public space (Whyte, 1980;

Gehl, 1987; Gehl Architects, 2004). Such work is vital for building an archive of

knowledge on human spatial behaviour, such that may be used in future design

projects. Most often however results from post-occupancy evaluations may not

directly apply to the design or building under investigation, as they take place

after a project’s completion and delivery to its users, at which point rarely any

amendments to the design of the space under study can take place.

Post-occupancy evaluations have been the de facto method for examining

the effect of spatial design on space use in the architectural field. However, pre-

occupancy evaluations of space use that may influence design decisions may still

take place, through the use of models. Models of spatial human-environment

interaction can be formulated based on previous observations, and subsequently

applied to a virtual representation of a proposed design. This application then

allows for an examination of how future occupants may act within the space,

and can help inform design decisions. Such models have become more and
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more relevant with the increase in computing power along with computer-aided

design (CAD) and building information modelling (BIM) (Yan, 2008), allowing

for more detailed scenarios to be examined during the design phase.

In the architectural design field and focussing specifically on the generic

function, three main modelling approaches are identified here which aim to cap-

ture space use in relation to the design of space: Space Syntax methodologies,

pedestrian and crowd modelling, and spatial use behavioural models. The three

approaches discussed here are only identified in broad terms, as it is often the

case that a particular model will include aspects from multiple categories, for

example a space use model will most likely include pedestrian movement as

one of its core functions, or a space syntax analysis may inform and drive a

pedestrian model, as demonstrated for example by Penn & Turner (2001). Nev-

ertheless, the core aspects of any model can often be traced to one of the three

core categories discussed here, with each category demonstrating a set of unique

principles, and so each will be presented independently to better illustrate recent

advances in space use behavioural modelling studying human spatial behaviour

as a result of spatial design.

2.1. Space Syntax methodologies

Space syntax is a set of analytical tools, which aims to capture social activity

as it may be identified through spatial configuration (Bafna, 2003). Its driv-

ing principle is to capture space and spatial relationships, and furthermore to

codify these relationships in a way that may allow for further analysis, in order

to identify if and how they affect space use (Hillier, 2007). Its principal tool is

the graph representation in which aspects of space are represented as nodes and

their relationships as edges connecting individual nodes, with derivative tools

including the convex map, the axial map, and the visibility graph, all method-

ologies for capturing an aspect of space. Social activity (and subsequently user

spatial interaction) is then calculated as a function of spatial characteristics. At

its core, space syntax therefore presents a deterministic model of space use.

Space syntax has seen significant application in the architectural profession.
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Examples for indoor space syntax analysis include workspace analysis using vis-

ibility graphs (Sailer & McCulloh, 2012; Sailer et al., 2016), in which social ties

and inter-personal interaction between colleagues (and thus very relevant space

use) is examined as a result of spatial configuration (Koutsolampros et al., 2018).

In a similar fashion, outdoor urban activity in terms of route preference has been

studied extensively using graph networks and axial maps (Penn, 2003; Turner,

2007), demonstrating its applicability across multiple scales of the architectural

and urban design professions (Dursun, 2007; Karimi, 2012).

2.2. Pedestrian and crowd modelling

Pedestrian and crowd models encapsulate a wide range of modelling method-

ologies which attempt to capture and reproduce the dynamics of people moving

in crowds, most often through the application of path-finding and movement

behavioural rules applied to the individual members of the crowd. Prime exam-

ples of this modelling approach are seen in evacuation and egress simulations in

flow-critical environments, for example train stations (Castle et al., 2011). Such

models have been applied to a variety of environment types, from restricted

spaces in indoor environments (Pelechano et al., 2007), to open space in large

outdoor environments (Batty et al., 2003; Torrens, 2015). A common feature

in pedestrian crowd simulations is the focus on emergent crowd behaviour as

driven by individual member behaviour at the local scale. At their core, such

approaches often implement a stochastic model of space use, as individual enti-

ties are programmed to react to conditions in their local surroundings, including

conditions as created by other entities acting in a similar manner.

Recent reviews of the wider field have been published elsewhere, demon-

strating the extensive work of the field: Pelechano et al. (2008) discuss crowd

simulations from a computer science and software design perspective, Papadim-

itriou et al. (2009) review transport-oriented pedestrian behaviour models, and

Torrens (2016) presents a recent overview of the general field of crowd simula-

tion covering computational streetscapes from multiple perspectives. There are

some examples in this category that are not concerned with interaction between
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spatial design and use, specifically those that investigate fundamental aspects

of crowd movement, for example the social force model by Helbing & Molnár

(1995) formulating a model for people negotiating their movement in dense

crowds. However the vast majority of the studies in this category apply these

modelling methodologies on virtual crowds in defined spatial environments, ei-

ther real or synthetic, in order to examine the effect spatial configuration has

on the behaviour of crowds formed by autonomous individuals.

2.3. Spatial use behavioural models

Spatial use behavioural models include some very recent approaches to simu-

lating individual users’ activity in space. On the surface they implement similar

approaches to pedestrian and crowd models in that their goal is to simulate

aggregate space use, examined at the level of the individual. However, they

differ from pedestrian and crowd models in one critical point (at least in the

context of this paper), in that they purposefully include stationary and occupa-

tion activities, in other words spatial use models aiming to fully capture Hillier’s

’generic function’, as discussed previously. Earliest examples of such computa-

tional models of space use are identified in the work of Yan & colleagues (Yan

& Kalay, 2004, 2005; Yan & Forsyth, 2005), whose proposed models aimed to

simulate the spatial behaviour of users in a plaza as a function of the conditions

of the built environment.

Subsequent work on the subject has expanded into the study of indoor and

workspace activity (Schaumann et al., 2016), using preset events to drive simu-

lated use (Simeone & Kalay, 2012; Schaumann et al., 2015), using hierarchical

systems to dynamically satisfy constraints at multiple scales (e.g. at the build-

ing, room, and agent level)(Zhang et al., 2019), using computer simulations in

academic architectural design courses (Hong et al., 2016), and overall actively

focussing on early-stage design (Wurzer et al., 2012) and not-yet built environ-

ments (Schaumann et al., 2015). Although promising, this particular field is

still quite new, and therefore not much work has taken place yet. Even so,

some early trends can be identified: First, there appears to be a turn towards
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individual and agent-based models (ABMs) for the simulation of space use, and

second, studies seem to be increasingly implementing three-dimensional space,

both for visualisation as well as for computational purposes.

2.4. Limitations of existing approaches in simulating open public space activity

Having discussed existing approaches for modelling space use, it is also nec-

essary to identify key aspects of the field of interest, i.e. actual human spatial

behaviour in open spaces, in order to highlight the requirements that any model

of such activity would need to take into account. Recording activity in real-

world spaces is often performed using ’behavioural mapping, a technique used in

environmental psychology and related fields for recording people’s behaviors and

movements systematically as these behaviors occur in particular locations’ (Ng,

2016). This technique is based on direct observation of people in a space, and

requires the precise and narrow definition of all the different behavioural cat-

egories relevant to the area under investigation (Ittelson, 1970, in Ng (2016)),

therefore the identification of relevant behaviours and activities is quite site-

specific. Furthermore, depending on the area under investigation, it is possible

for the number of activities to be quite large, as for example in Goličnik (2005),

who in their work of recording behaviours in open spaces in two European cities

defined 42 categories (Goličnik, 2005, Appendix B.1, p. 177).

In addition to the number of activities, the occurrence of each activity seems

to vary by site as well. In a comparison of recorded stationary and movement

activities (as shown in Table 1) between five urban parks in different European

countries reported by two studies (Goličnik & Ward Thompson, 2010; Cheliotis,

2019)1, the ratios between stationary and movement activities were found to

differ significantly. Although expected, as different areas and cities could attract

different activities, this nevertheless highlights the complexity of such spaces in

their use profile.

1Activity counts for Edinburgh and Ljubljana were aggregated to more basic types by

translating as was seen appropriate
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Location
Total count

Movement activities Stationary activities

City Park Count % Count %

Edinburgh
Princes Street Gardens 3254 1183 36.36% 2071 63.64%

The Meadows Park 2768 1773 64.05% 995 35.95%

Ljubljana Tivoli Park 3610 1876 51.97% 1734 48.03%

London
Hyde Park 4599 2142 46.57% 2457 53.43%

Queen Elizabeth Olympic Park 2479 1127 45.46% 1352 54.54%

Table 1: Movement and stationary activities as a percentage of total recorded activity in 5

urban parks

Such variety in activities and probability of occurrence would be highly com-

plex to simulate using one of the existing approaches. More specifically, Space

Syntax methodologies present a deterministic model of spatial activity, and

moreover spatial behaviour is modelled as a direct result of spatial morphology,

rather than inter-personal interaction. Spatial use behavioural models present

a fitting approach in terms of scale and scope, however models reviewed in this

work were found to focus on more restricted environments, such as workspaces

where activities were few and modelled explicitly. This poses a significant lim-

itation, as it would be inefficient to codify for example all 42 activity types

proposed by Goličnik (2005). Finally, pedestrian and crowd simulations, while

they often propose a more fundamental mechanic for driving individual be-

haviour (e.g. as per the social force model by Helbing & Molnár (1995)), which

could capture the variety of activities in more abstract form, focus mainly on

crowd flows and movement activities, often excluding stationary behaviours.

Therefore, this paper identifies a need for a stochastic model of public space

use that captures aggregate spatial activity as it emerges through the interac-

tions of individuals operating on generalized rules of spatial behaviour. Further-

more, in order to capture the wide range of activities and their probability of

occurrence as observed in real-world spaces, a more abstract representation of

such activities is needed, such that specific activities can be mapped/translated

to their more fundamental representation. As such, this paper proposes a model

of public space use building on principles akin to Hillier’s ’generic function’ (i.e.
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using a broad classification of movement and stationary activities), and further-

more driven by more fundamental social proximity observations as stipulated

by Whyte (1980) and Gehl (1987) and other observations recorded through

behavioural maps.

3. An agent-based model of public space use

Given the particularities of the field under investigation, of spatial behaviour

in open spaces as driven by the interactions of individuals within them, the

model of pubic space use in this work is developed using the agent-based mod-

elling (ABM) paradigm, as it has been argued that ABMs are quite adept at

simulating spatial processes at the micro-scale (Heppenstall et al., 2016). More

specifically, this work presents a model of park activity, with park visitors mod-

elled as autonomous agents functioning on simple behavioural rules, who move

and engage in activities based on a stochastic process. As was discussed in the

previous section, the model of human activity requires a more abstract repre-

sentation so as to include multiple activity types in their generalized form, as

well as a wide range of different activity occurrences. As such, the base activity

decision making process contains two fundamental activity types (Movement

and Stationary) with agents changing between the activities based on variable

activity probabilities, able to capture multiple different area use profiles. The

term ’stationary activity’ is used here as an umbrella term for any type of ac-

tivity that requires an individual to remain at a (relatively) fixed location for

the duration of it. This representation provides a functional framework for sim-

ulating behaviours where the exact process may not be known, and additionally

provides the necessary flexibility to expand and include additional activities as

needed, by adding new activities and probabilities to engage in.

Furthermore, given the scale of observation of the field of interest, that be-

ing the field of architectural and urban design, interactions between individuals

exist wholly in and are influenced by the three-dimensionality of the environ-

ment. More specifically, multiple cases exist in which interactions observed in
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the real world may only be simulated in a 3D environment, as any reduction in

spatial dimensionality would significantly alter the interaction (Cheliotis, 2019,

p. 143), including for example visibility between individuals over different levels

(e.g. as in a balcony over plaza scenario), movement over multiple levels with

overlapping geometry (e.g. an overpass over a footpath), or the slope of the ter-

rain affecting activities (e.g. in areas with significant landscape). As such, the

ABM of public space use in this paper will be developed in a 3D environment.

The rest of this paper presents an ABM that captures public space use and

human socio-spatial activity. The model presented here is still at an early stage

of development, and aims to present a generalized formalization of human ac-

tivity in public spaces. For this reason, it aims to capture public space use in

broad strokes rather than present more specialized cases, and therefore a con-

scious effort has been made to simplify model elements where possible. Overall,

the model incorporates observations and findings from public space use surveys

mentioned previously and implements them in a sample park environment, as

this type of location presents a fairly unrestrictive environment to test whether

a model incorporating simple behavioural rules can generate use patterns ob-

served in real world conditions. Furthermore, the model presented here was

developed using the Unity engine (Unity Technologies, 2018), a 3D video game

development and simulation platform (Juliani et al., 2018). Finally, ABMs have

been introduced fairly recently in the architectural design field, and as such have

not been documented and presented in a consistent method, a phenomenon doc-

umented by Angus & Hassani-Mahmooei (2015) when ABM are introduced in

a new field. As such, this paper will implement the ODD protocol (Grimm

et al., 2006, 2010) to describe the ABM of public space use, a standardized

format for presenting ABMs, similar to how related fields have approached the

presentation of models of pedestrian crowds (Crooks et al., 2015).

3.1. Purpose

The purpose of this ABM is to study the interaction between designed spa-

tial environments on the one hand and human spatial behaviour in open public
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spaces on the other, by examining the extent to which simple behavioural rules

at the individual scale (as hypothesized through empirical studies) can repro-

duce observed aggregate activity in public spaces.

3.2. Entities, state variables, and scales

There are three main entities in the model: The agents, the environment,

and the controller. The agents are the dynamic entities in the model, the

environment is the static physical environment within which the agents act,

and the controller is a top level module that regulates the agent population and

model scheduling processes.

3.2.1. Environment

The environment is a virtual represenation of a public open space2 with

significant landscape and overlapping geometry. Space is represented continu-

ously, modelled using 3D mesh geometry at a reduced level of detail (i.e. using

block geometry) rather than using high fidelity models and textures, to opti-

mize rendering and computation in 3D space. One spatial unit in model space

corresponds to one metre. Time is modelled as discrete time-steps, with each

simulation tick representing one second.

The physical environment is further divided into distinct objects as needed.

In this model, the terrain is divided into four distinct types: grass, paths, wa-

ter, and roads, as this classification was considered to be a good balance be-

tween minimizing number of different terrain types, while allowing for adequate

variation. Each terrain type exhibits different characteristics: Paths are the

preferred walkable areas, and do not allow for stationary activities to be devel-

oped on them. Grass areas are navigable areas (with smaller weight compared

to paths) that can host stationary activities. Roads are navigable areas (at

smaller weights compared to grass areas) that do not allow for stationary activ-

ities. They represent vehicle space, and so in the context of a model of public

2For the purposes of presenting this model overview, a sample park environment was

created
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Figure 1: Virtual environment (right) with individual layers and features (left)

space use provide no utility other than necessary traversal space, and are used in

this model to border the environment. Water surfaces are non-navigable areas

(and therefore do not allow for any activities to be developed on them), and

are essentially obstacles in almost every sense, with the notable distinction that

they allow visual communication over them.

Further park features are added to the environment as individual objects,

constrained to trees, attractions, and park gates in this model. Trees (repre-

senting both actual trees as well as bushes and shrubbery) present physical and

visual obstacles, but do not present an obstacle regarding navigation. Attrac-

tions represent locations in the area of interest that contain features and other

defined elements that might serve as a point of attraction (e.g. restaurants,

amenities, monuments, etc.), and pose a physical obstacle regarding some ac-

tivities. Gates signify the area entrances and exits, and in this model are placed

at the area corners and mid-points of sides. Gates do not have a physical pres-

ence in the environment. The final 3D model of the environment along with

a detailed view of individual layers and features is shown in Figure 1. The

dimensions of the park model used for this paper are 500 by 300 meters.
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Figure 2: Abstract representation of the agent decision making process, modelled as a three

state Markov chain

3.2.2. Agents

Agents represent human park visitors, with each agent representing a single

individual visiting the area of interest for a predetermined duration. Agents

have a physical presence in the model, represented using a simplified box geom-

etry with dimensions 1/0.5/2 meters (width/depth/height), and have limited

knowledge of the environment for the purposes of wayfinding and navigation,

but otherwise rely on synthetic vision to detect other entities and features.

The agent decision making process is modelled as a Markov chain (Figure 2)

with two core activity types (Movement and Stationary), each with probability

values (PM , PS respectively) set by the user. Furthermore, stationary activi-

ties are assumed to potentially have some requirements for their deployment,

whether they may be physical, such as an activity that takes place at a par-

ticular location (e.g. a cafe) or within a particular morphology (e.g. on flat

or sloped terrain), or social, such as social interaction activities. As such, sta-

tionary activities furthermore may include a preparatory process which allows

an agent to scan their environment and look for the optimal location, before

engaging in the stationary activity for a specified duration.
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Figure 3: Controller logic

Agents are introduced into the simulation by the controller, and are removed

in one of two ways, either through their own when their visit duration comes to

an end, or prematurely via the controller, in cases where the simulated agent

population surpasses the expected agent population.

3.3. Process overview and scheduling

The controller handles top level scheduling tasks including logging and mon-

itoring, and controls the agent population numbers in the model. It updates at

fixed intervals of 900 timesteps. At every update it determines the total agent

population over the coming 900 timesteps, compares it to the existing and ex-

pected agent population, and adds new agents or flags existing agents to exit, as

necessary. The controller is set up in this way to enable modulation of the agent

population (e.g. to simulate daily activity cycles) without imposing significant

control over individual agents’ behaviours, thereby allowing external models to

drive the agent population size at any point in the simulation. The controller

logic is shown in Figure 3.

Agents are introduced into the environment at predetermined locations placed

at the park entrances, marked as gates. Once an agent has initialized, it wanders

in the area, keeping track of its time in the simulation (its age), and engages

in stationary activities until its age reaches the predetermined visit duration

(the agent’s lifetime), at the end of which it moves to one of the park exits and
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Figure 4: Agent behaviour flowchart

is removed from the simulation. During its lifetime, it operates based on the

flowchart shown in Figure 4. Agents update during each step asynchronously,

in fixed order, sorted by time of introduction (earlier agents act first).

3.4. Design concepts

3.4.1. Basic principles

The driving concept behind the ABM presented here is the often observed

characteristic of crowd behaviour in public spaces mentioned previously, which

broadly states that human activity at adequate capacity in a public space is in

itself an attractor for other people to engage in activities in that same space,

in addition to physical characteristics of space. Agents in the model are pro-

grammed to act in this manner, by engaging in stationary activities in locations

chosen due to their social and physical conditions. In addition to the station-

ary activities, agents are allowed to move within the environment, providing an

abstract framework within which agents as a whole move and respond to that

movement by engaging in stationary activities.
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3.4.2. Emergence

It is expected that agents operating on stochastic behavioural rules follow-

ing the basic principles stated above, combined with the capacity to scan and

survey their local surroundings, and placed in a well-defined (i.e. designed)

environment, will collectively exhibit non-random spatial distributions of activ-

ity, with identifiable patterns directly relatable to the environment’s layout and

comparable to spatial behavioural patterns observed in real-world parks.

3.4.3. Objectives

Some agent stationary activities require a preparatory process, during which

an agent will search for the optimal location to engage in the intended activity.

Each such activity has a set of predefined spatial and/or social requirements,

according to which the agent scores potential locations for the intended activity.

3.4.4. Sensing

Agents have a form of synthetic vision implemented in the model using

raycasting, which they use to detect their local environment including obstacles,

terrain types, and other agents.

3.4.5. Stochasticity

Model elements relating to agent behaviour and parameters are driven by

stochastic processes, generating a heterogeneous agent set. More specifically,

agent movement speed is drawn from a distribution, and agent lifetime is drawn

from a distribution with a minimum threshold ensuring that even agents with

short lifespans get to loop through their behaviour tree a few times. During

an agent’s activity decision-making process, the next activity that an agent will

engage in as defined by the Markov process is selected using probabilities as

set by the controller. Position sampling is performed by randomly selecting

points on the ground around the agent’s current location using a bivariate (2-

dimensional) semi-circular distribution.
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3.5. Initialization

At model initialization, the following elements are set: The state of envi-

ronmental objects is set, for example the existence and location of area gates

and features/attractions. Additionally, global values for agent behaviours are

set, i.e. the parameters that are homogeneous across the agent population at

the current time in the model development. These include the probabilities

for each agent activity type, and agent sensory and interaction distances. At

t = 0 agent population is 0; the model initializes with a controller update which

sets the target population size, and agents are gradually introduced over many

timesteps, to allow for dispersion within the area.

3.6. Input data

The model is able to utilize input data from external models to drive agent

total population during controller updates, but can also function without using

input data to represent time-varying processes. For the purposes of presenting

the model in this paper no input data was used, but rather all values and

parameters were set by the user.

3.7. Submodels

3.7.1. Agent vision

Agents employ a form of vision by using raycasting and similar physics-based

collision detection. This form of synthetic vision is used to check what entities

are visible from a particular location as shown in Fig. 5a, as well as during

movement to identify potential move destinations (Fig. 5b), further illustrating

the need for 3D environments in public space use models.

3.7.2. Move Activity

Agents use the A* pathfinding algorithm for calculating shortest paths on a

navigation mesh to move in the environment. Two different implementations of

path-planning are used: if an agent has a defined target location, regardless of

distance (for example an exit gate), they will calculate the shortest path on the
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(a) Raycasting vision to sample a location: other agents visible from a particular location (blue

lines), and agents obstructed from view from that location (red lines)

(b) Raycasting vision to find valid move destination: For sampled locations (white circles),

points without direct line of sight (red lines) due to sloped terrain are discarded

Figure 5: Agent vision

navigation mesh and on subsequent timesteps move at their speed towards it.

If an agent is in a Move state, they move using an angular-constrained random

walk (ACRW): In ACRW, an agent will pick a new location at random within

its current field of view (Figure 6), so that it has line of sight to it, the location

is on valid terrain, and a valid path to it exists. Once such location is found,

the agent calculates the shortest path to it on the navigation mesh, and on the

following timesteps moves at its speed on the path until it reaches its target.
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Figure 6: Agent field of view and random walk location decision process: The white points

are discarded as potential target locations, as they fall outside the agent’s field of view. The

black point is chosen as a valid target location.

3.7.3. Stationary Activities

As discussed earlier (section 3), ’Stationary activity’ is a broad definition

that encompasses all potential activities taking place at any fixed location, and

may be expected to have additional requirements for their deployment. The

general implementation of a stationary activity is straightforward, with agents

currently engaged in a stationary activity essentially planting themselves at

a location in the area and remaining there for the duration of the activity.

However the actual stationary activity is preceded by a preparatory process,

during which the agent scans its environment and samples locations using its

vision capabilities to identify features, other entities, and terrain characteristics.

Sampled locations are then scored according to the particular physical and social

requirements of the stationary activity in order to identify the optimal location,

and once such a location has been identified, the agent then proceeds to engage

in the activity as discussed.

In order to apply the model to a scenario, stationary activities along with

their requirements were defined, relevant to the area of interest. For brevity,

and given that this is a preliminary study, three generic activity types were

implemented that capture the full spectrum between physical and social condi-
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tions, on the assumption that any stationary activity may be described via a

combination of requirements of the two extremes: A Social activity that only

takes into account other agents, an Environmental activity that is tied directly

to environmental conditions and the spatial layout, and a Socio-Environmental

activity that relies both on environmental and crowd conditions.

The three activities described here translate broadly to three activity types

often observed in parks: Visiting particular features and attractions (Environ-

mental activity, in which a visitor moves directly to the point of interest), en-

gaging in sports activities (Socio-environmental activity, which takes place in

an area free of obstacles (e.g. no trees, water), and clear of other park visitors),

and general leisure park visits (Social activity, affected by the existence of other

park visitors according to observations on social proximity). This classifica-

tion further appears adequate in capturing multiple detailed activities under a

broader description, as is shown in Table 2, where the 42 activity types proposed

by Goličnik & Ward Thompson (2010) are mapped to the abstract categories

discussed here including the ’movement’ activity.

Social activity. The Social activity is driven by the conditions presented by

other agents in the model and is preceded by a pre-calculation phase. Dur-

ing the pre-calculation phase, a sampling loop takes place for a predetermined

duration, during which Move activities are continuously implemented. While

moving during pre-calculation, the agent samples nearby locations and scores

them based on the number of other agents visible from that location. Each sam-

pled location’s score is the sum of all other agents within vision distance with

direct line-of-sight, with a heavy penalty applied for each agent within very

close proximity (termed the agent’s personal distance) of the sampled location3.

After sampling is finished, the agent moves to the location with the highest

score, and remains there stationary for the activity duration. The sampling and

3This penalty is used so as to simulate the observation of personal space in interpersonal

physical interactions.
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Base category Detailed description Base category Detailed description

M Walking M Roller-skating

M Cycling M Skateboarding

S Standing S Sitting while roller-skating

S Sitting S Sitting while skateboarding

SE Sitting on a bench S Standing while skateboarding

SE Sitting around a table SE Bmx acrobatics

M Pushing a pram S Lying down

M Walking a child SE Lying down on a bench

M Walking a dog SE Sitting on a tree

M Pushing a pram and walking a child SE Playing

S Sitting with a pram SE Playing football

SE Sitting with a pram on a bench SE Playing badminton

S Sitting with a dog SE Playing frizbee

SE Sitting on a bench while walking a dog SE Playing with a ball

S Standing with a pram E Climbing

S Stopping SE Rolling down

S Stopping with a pram SE Flying a kite

S Stopping with a dog E Fishing

S Stopping – talking M Using a wheel-chair

M Jogging M Pair situations: walking together

M Propelling scooter S Pair situation: sitting together

Table 2: Mapping of detailed stationary activity descriptions, as proposed by Goličnik &

Ward Thompson (2010), to base category

calculation process is shown in Figure 7.

Environmental activity. The Environmental activity is driven exclusively by

conditions presented by the physical environment. It does not require a pre-

calculation phase. At the start of an Environmental activity, an agent chooses

one out of a set of predetermined attractions in the area at random, picks a

location at random within close distance of the attraction (within 25 meters,

simulating dispersion around the point of interest), and starts moving there.

Once it reaches the target, it remains there stationary for the activity duration.

Socio-Environmental activity. The Socio-Environmental activity is driven by

conditions presented both by the physical environment and by other agents and

requires a pre-calculation phase. During the pre-calculation phase, a sampling
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Figure 7: Social activity sampling process. For sampled locations A, B, and C and scores

measured as +1 for each agent in view distance and −100 penalty for each agent within

personal distance: A has a score of 7, B has a score of 2, and C has a score of -89 (+11 visible

agents -100 for one other agent within personal distance)

loop takes place until an adequate location is found, during which Move activ-

ities are continuously implemented. While moving, the agent samples nearby

locations for areas of a fixed radius that are free of obstacles and are on rela-

tively flat terrain. Objects that are recognized as obstacles include: Paths and

Water terrain, trees, buildings, and more than one other agent not in Move

or Socio-Environmental state. Once a location is found, the agent moves to

the location, and remains there stationary for the activity duration. While in

a Socio-Environmental state, the agent is assumed to occupy the whole area

within the fixed radius around the detected location. The calculation process is

shown in Figure 8.

3.7.4. Agent decision-making process

An agent may therefore be engaged in one of four main activity types at any

point in the simulation: Move (M), Social (S), Environmental (E), and Socio-

environmental (SE). During each decision-making step, the decision for which

activity to engage in next is performed using a stochastic process. With the

addition of a pre-calculation step required for some of the stationary activities,
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Figure 8: Socio-Environmental activity sampling process. For sampled locations A, B, C, and

D: A is discarded for having 3 other agents, B is discarded for overlapping water geometry, C

is discarded for overlapping with path geometry (one other agent is acceptable), D is valid.

the full decision-making process of the functional activities is shown here as a

conditional Markov Chain (Figure 9), with the Move activity as the starting

and default activity for agents. Probabilities for each of the activities were set

by the modeller for each simulation run, as the model has not been calibrated

to real-world data at this point.

3.7.5. Agent activity duration

Agent activity durations are divided into two categories, movement activity

durations DM and stationary activity durations DS , which are handled differ-

ently. Movement activity duration is determined by the current path length and

the agent’s movement speed, with the agent keeping track of the average move

activity duration over its lifetime.

Regarding stationary activity durations, it has been established (subsec-

tion 2.4) that public space user activities cover a wide range in terms of oc-

currences; furthermore, the occurrence of different activities is expected to be

directly affected both by the duration of such activities, and by the activity

probability, as longer and/or more frequent activities will have a higher chance

of being observed. Additionally, activity durations are not known, activity oc-
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Figure 9: Agent activity decision-making process presented as a Markov Chain

currences (and therefore their probabilities) are shown to vary depending on case

study, and finally activity probability may be set by the modeller depending on

the area of interest. As such stationary activity durations DS are calculated

so that consistency is maintained between three parameters during the course

of the simulation: for a given value x of the stationary activity probability, on

average at any time in the simulation x percentage of agents should be engaged

in that stationary activity, and furthermore agents should (on average) spend x

percentage of their lifetime in that particular activity.

In order to maintain this consistency, the formula used to calculate the dura-

tion of a stationary activity DS is dependent first and foremost on the duration

of an average Move activity DM , rather than assign a fixed value. This is done

in order to provide a scaleable method, so that the ratio between move and sta-
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tionary activities may be maintained in different scenarios where Move activities

have different durations to the ones set in this model. Furthermore, in an ideal

setup, DS would be set to equal DM and duration ratios between Stationary

and Move activities would hypothetically be in agreement with the probability

of engaging in a Stationary activity PS as required, due to the Markov Chain

setup4. However agent behaviour elements skew this ratio in favour of Move

activities, specifically the precalculation stage for stationary activities (which is

measured as time spent in movement) and the Exit process (which may lock

an agent in a lengthy Move activity depending on the exit point chosen), and

therefore DS needs to be longer than DM , to compensate. Furthermore, as

higher probabilities for stationary activities introduce additional precalculation

phases, stationary activity error increases for higher PS , and as such the formula

for calculating DS needs to take into account PS as well to allocate proportion-

ally more time to stationary activities for higher PS values. A comparison of

different formulas is shown in Figure 10, to better illustrate the discrepancies

discussed here. In order to maintain the consistency between stationary activity

probability, agent engagement, and agent lifetime spent on activity, as discussed

earlier, the final formula for DS takes into account the average activity duration

DM , the average precalculation phase duration DP , and the stationary activity

probability PS , and is defined as:

DS = DM ∗ a + DP ∗ P b
S ∗ c

With variables a, b, c used for calibration. Trough trial-and-error, the values

for a, b, c were set to 1.6, 2.0, 6.0 respectively, which produced the best fitting

curve.

4e.g. for PS = 0.1, an agent would choose to engage in a stationary activity one out of

ten times, and due to equal activity durations would therefore spend 10% of their time in

stationary activity, as expected
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Figure 10: Agent population percentage engaged in stationary activity by different stationary

activity probabilities, for different formulas of stationary activity duration calculation. The

aim of the stationary activity duration calculation is to maintain consistency between model

input and output, so that any input stationary activity probability is reflected in model

output as the percentage of agents engaged in stationary activity, and therefore the aim is to

implement a formula whose output falls on the diagonal in the graph.

3.7.6. Exit Process

When an agent enters its Exit process (either on its own after reaching the

end of its visit, or due to the controller flagging it to exit prematurely, to regulate

overall population numbers), it selects one of the area’s gates at random, plans

a path to it, and moves to its destination. Once the gate is reached the agent

removes itself from the simulation.

4. Model experimentation

Testing and execution of the model was done using multiple different input

parameter sets in order to establish two distinct tasks: Verify that the model
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performs as expected without significant bugs, and test the responsiveness of

model output to input parameters through sensitivity analysis. Finally, once the

model’s internal mechanics had been tested thoroughly, the model’s output was

compared to spatial activity in open spaces as observed in other studies, to vali-

date that the dynamics and spatial patterns exhibited by the model correspond

to patterns exhibited in real world locations in similar conditions.

4.1. Experimental model setup

For the model test runs, the following model setup was implemented: The

agent population was kept constant to 1000 agents for the duration of the run.

The simulation duration was set to 21600 updates, equivalent to 6 hours in sim-

ulated time. For each parameter set, multiple simulation runs were performed.

During each controller update a snapshot of the current state of the simulation

was captured and relevant metrics were recorded.

The duration of the precalculation step for the Social activity was set to

twice the average Move activity duration, with this value chosen as a balance

between the agent covering adequate ground during sampling while at the same

time not spending too much time to prepare for the stationary activity. Personal

interaction distance for the Social activity was set to 10 meters. The area radius

for the Socio-Environmental activity was set to 15 meters. View distance was

set to 100 meters for all activities and sampling processes, with the exception

of the angular-constrained random walks (ACRWs), where a modified value of

200 meters was also tested. Given that for some of these parameters no real-

world data exists to validate against, the values mentioned here were set fairly

arbitrarily to broadly correspond to real-world conditions, in order to provide a

benchmark and some preliminary model results.

As stated in the model definition (subsection 3.4), agent lifetime was drawn

from a probability table, with probabilities shown in Table 3. Lifetime is ex-

pressed in update ticks, which for this model correspond to seconds, i.e. the

maximum visit duration (14400 seconds) is equivalent to 240 minutes/4 hours.

Visit durations and probabilities were informed by park visitor surveys (Ipsos
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Mori, 2015b,a).

Agent Lifetime (update ticks) Probability

300 - 1800 0.16

1800 - 3600 0.24

3600 - 7200 0.39

7200 - 10800 0.16

10800 - 14400 0.04

Table 3: Agent Lifetime

Finally, agent movement speed values were drawn from a normal distribution

with a mean of 1.49 m/s and a standard deviation of 0.15 m/s, with these values

suggested by Daamen & Hoogendoorn (2007) as the characteristics of movement

speeds of pedestrians moving in unconstrained conditions, which is an accurate

description for conditions in a park.

4.2. Verification

As part of the model verification process, the variables not set explicitly to

a single global value (i.e. those set by a probability table, drawn from distri-

bution, etc) were tested to establish that model output does not deviate from

intended distributions. Specifically, model verification was performed for agent

population total, agent lifetime, and agent activity probabilities.

Agent population total over the course of the simulation is essentially a vari-

able in the model, for multiple reasons: the controller does not have direct

control over the removal of agents, but only sets the target population size and

flags agents as necessary to run their ’Exit’ behaviour if the target is exceeded;

an agent’s ’Exit’ behaviour takes a variable amount of time, depending on dis-

tance to the exit, movement speed, etc; agents do not have a fixed lifetime, but

rather their lifetime is decided by a probability table. For the reasons men-

tioned above then, agent population in the model is not guaranteed to always

be consistent with the target agent population. As can be seen in Figure 11,
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Figure 11: Agent population over time. Target population is marked by the bold dashed line.

while the model performs well at keeping the agent population constant as ex-

pected, it consistently under-estimates by approximately 50 agents. This is due

to the data logging process which takes place during the controller update when

agent population is expected to be at its lowest, as agents introduced during

previous updates have finished their lifetime and exited, but the controller has

not introduced the new agents yet.

Agent average lifetime (representing park visit duration) was similarly logged

over the course of the simulation run, calculated as the average lifetime of all

agents in the simulation up until that point (including agents already removed

from the simulation), and compared against the expected average visit duration

form the probability table. As can be seen in Figure 12a, average agent lifetime

converges to a value slightly less than the expected average of 4842 ticks, to

4445 ticks. Indeed by comparing cumulative probability curves for input and

simulated lifetime averages (Figure 12b), it can be seen that the model slightly

overestimates shorter lifespans.

Regarding agent activities, three aspects were examined: The average time

per agent spent on any stationary activity compared to a movement activity;

The average time spent engaged in a particular activity; And the relative number
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(a) Average agent lifetime over time. Expected average marked by bold dashed line

(b) Cumulative probability of agent lifetime

Figure 12: Average agent lifetime
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(a) Percentage of life-

time spent in activity

(b) Percentage of agents engaged in activity over time

Figure 13: Agent activities. Dashed lines mark the expected value for each activity

of agents engaged in a particular activity at any point in the simulation. For

this set of verification runs, the activity probabilities were set globally and were

kept constant over the course of the simulation run, providing a homogeneous

population regarding the agents’ activity probabilities. Therefore the aim of

the process here is to verify that activity probabilities perform as expected on

average over all agents in the simulation.

For the verification run, the following activity probabilities were set arbi-

trarily, to check that agent activity durations are calculated as expected: Social

activity PS = 0.15, Environmental activity PE = 0.25, Socio-Environmental

activity PSE = 0.1, and therefore the Move activity was assigned a probability

of PM = 0.5. Results from 5 simulation runs were recorded. Figure 13 shows

the statistics of these runs, highlighting results relating both to the first two as-

pects, of activity durations regarding the agent’s timeline, and the third aspect,

of activity populations over the simulation’s timeline.

As can be seen, on average the agents spend close to the expected amount

of time in a particular activity (Figure 13a), however the model does appear

to consistently under-estimate stationary activity durations slightly. In relation

to the overall simulation however (Figure 13b), it appears that agents overall
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engage in activities as expected. This small discrepancy is attributed to agents

with very short lifespans: In these instances the agent has not had enough time

to engage in any activity (and therefore each of the activity percentages for the

particular agent would be zero), and therefore is bringing the overall average

activity duration over lifetime down, as it is calculated on a per-agent basis.

Similarly, as these agents have a short lifespan, they are quickly removed from

the simulation, and so they do not have time to have a significant impact on

overall statistics over the course of the simulation.

4.3. Sensitivity analysis

In addition to verifying that model mechanics work as expected, the model

was tested in regards to the impact different parameter values have on the overall

output, as part of the model sensitivity analysis. This was done by inputting

different parameter value ranges and recording model output for each in order

to identify the effect of each, so that when the time comes for real-world data

to be incorporated for calibration, operational ranges for model parameters are

known along with their effects, allowing for a more controlled calibration. The

following model parameters were tested: Agent vision distance (used solely for

the Move activity), agent angle of view, and agent activity probabilities.

To visualize and measure the effect of different model parameters, a square

grid of size 25 was implemented that was used to record the number of agents in

each cell at regular intervals. Agents in each cell were recorded as a percentage of

the agent population total at the current timestep, and were further categorized

by the type of activity they were engaged in at that point. At the end of each

simulation run, an average for each type of activity over all timesteps was taken

for each activity type per cell, effectively producing a heatmap of activities

aggregated over the course of the simulation, or in other words a footprint of

activity distribution for each particular parameter set. The spatial distribution

was visualized in two ways: with heatmaps using the grid values, preserving

spatial relationships and allowing the spatial distribution to be understood in

the context of the environment; and by plotting the cumulative sums of agent
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concentrations over ranked cell order using a Lorenz curve, so as to visualize

the relative differences in agent concentrations, similar to the use of the curve

in measuring the Gini index (Gastwirth, 1972).

4.3.1. Movement

Agent vision distance and agent angle of view values were examined for their

impact on the wandering behaviour of agents. For the simulation runs examining

these two particular parameters the agent stationary activity probabilities were

set to zero, so that agents only engaged in wandering behaviours. Parameter

values for the agent vision distance included the default value of 100 units and

a doubled value of 200 units, while the angle of view parameter set included a

90◦ and a 180◦ angle. The two parameters were tested in combination, for a full

set of 4 value combinations, with 5 simulation runs executed for each parameter

combination.

An example of the spatial distribution of agents in the environment for each

parameter combination is provided in Figure 14, to provide a better under-

standing of the spatial effects of each parameter value. Each image shows the

cumulative agent densities for each cell at the end of the simulation run. Addi-

tionally, the Lorenz curve for each of the runs is shown in Figure 15, where a

perfectly equal distribution (i.e. all cells containing an equal number of agents)

would fall perfectly along the diagonal, and a larger curvature signifies a stronger

disparity in agent concentrations between high and low density areas.

As can be seen in both figures, a shorter vision range results in a more smooth

dispersion with less pronounced changes in density, whereas a longer vision range

results in a sharp differentiation of more populated cells, found mainly on the

paths and around bottlenecks. Angle of view has a less pronounced effect,

positively affecting dispersion, but to a lesser degree. Both of these results are

expected: Given the movement cost for navigating different terrains and the

fact that paths are the preferred terrain for moving on, a longer vision distance

allows agents to pick a destination that is further away, and therefore, their

route-finding will have them on a path terrain for longer. Similarly, a wider
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Figure 14: Agent distribution for Movement activity runs

Figure 15: Grid cell occupation Lorenz curve for Movement activity runs
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angle of view allows agents to pick targets that deviate more from their current

heading. Also given the fact that most of the terrain is green areas, even in

cases where an agent is heading down a path the likelihood of their random

walk taking them into a green area is higher with a wider angle of view, an

effect increased when in combination with a short vision distance, as the agent

stays off-path for longer.

4.3.2. Stationary Activities

Stationary activity probabilities were examined for their impact on the dis-

tribution of agents in the environment. For the simulation runs examining activ-

ity probabilities, each activity was tested in isolation (essentially being the only

stationary activity with a non-zero probability for that run), and furthermore

each activity was tested at the 7.5% and 15% probability. For each parameter

set, 3 simulation runs were performed. An example of the spatial footprint for

each activity as well as the associated movement patterns is shown in Figure 16,

which shows the result of each activity at a probability of 15%.

The Lorenz curves for each activity type and probability value, along with

a set of ’no-activity’ runs included for comparison, is shown in Figure 17. It

is interesting to note a few things: For each of the activity types, an increase

of the probability value results in a sharper difference in the concentrations be-

tween high and low density cells, in other words even at lower probabilities the

agents detect and occupy the available and suitable areas, and increasing the

probability of each activity increases the concentration of agents at those areas.

However it is interesting to note that activity type does seem to affect the range

of difference between high and low density areas, and furthermore the jump in

difference appears to correlate with the degree to which an activity is tied to

environmental parameters: The Environmental activity relies solely on environ-

ment parameters for an agent to engage in, and results in the largest increase in

difference between low and high density areas when changing probability values,

whereas the Social activity, which does not take into account environmental pa-

rameters, shows a negligible overall increase in difference. This finding makes
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Figure 16: Agent distribution by activity for single Stationary activity simulation runs
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Figure 17: Grid cell occupation Lorenz curve for single Stationary activity simulation runs

sense: For activities that have a boundary restriction, i.e. can only happen

within certain areas, increasing the population of agents engaging in such ac-

tivities only increases the density/concentration at those certain areas, whereas

activities that are not bound spatially are allowed to spill over to other, less

optimal locations, if needed.

4.4. Validation

An extended validation of this model against real-world data captured specif-

ically for this task is outside the scope of this paper, whose aim was to present

the model mechanics. In lieu of validation, a number of patterns as generated in

the model are compared to behavioural patterns captured in previous studies, to

demonstrate that in principle the model of public space use is able to generate

behavioural patterns similar to those found in the real-world.

Spatial distributions of activity were compared to recorded activity in a park

in Edinburgh as reported by Goličnik & Ward Thompson (2010) (Figure 18).

The model appears to present similar clustering effects to the empirical study,

particularly when comparing observed sport and play activities to simulated

Socio-Environmental activity: in both cases, the activity appears to take over
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open areas in the park, and furthermore has minimal overlap with other ac-

tivities5. Visitors on the move appear to predominantly stay on paths, both

in the model and in the empirical study, although in the model agents moving

towards a location to engage in a stationary activity are classified as being in a

Move state, and therefore a number of them is also recorded away from paths.

Social activities, although under-represented in the empirical study (only a sin-

gle activity type was recorded, of visitors sitting), nevertheless appear to have

similar characteristics to the distribution of simulated Social activity: the few

clusters of sitting visitors are out of the way of Socio-Environmental/sports

activities, and are near and within view of larger crowds. Finally, regarding

the Environmental activity, the empirical study does not present observations

on location-specific activities, as the area itself (the Meadows) do not contain

significant features that could be considered as attractors in the sense used in

this model, and therefore this activity could not be validated.

Movement as well as temporal patterns of simulated visitor behaviours were

compared to similar patterns as reported by other studies. Orellana et al.

(2012) present movement patterns of four visitors to a national recreational

area, analysing their sequence of visited locations and time spent on each from

a list of attractions, quite similar to this model’s implementation of an Environ-

mental activity. Simulated movement tracks of four agents (Fig. 19a) present

a similar pattern, with fixed attractor locations showing significantly increased

concentrations of visitation, and furthermore with agent tracks tracing out ma-

jor pathways between the locations (highlighted in yellow). One major difference

is noted however compared to observed paths (as shown in Fig. 19b), in that

simulated paths are significantly more scattered throughout the area: this is

due to two factors, first the ACRW movement behaviour in agents causes them

to randomly wander in the area when not moving towards a goal, and second

5In the model, movement activities are not considered as obstacles when an agent is search-

ing for a location for a Socio-Environmental activity, and therefore overlap between SE and

movement activities is not considered
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the inclusion of other stationary activities which take place at locations other

than attractor points.

Similarly, temporal patterns of four agents were compared to visit sequences

of visitors from the same study. The empirical study used here for validation

(Orellana et al., 2012) focussed on capturing visit sequences between distinct

locations and the order in which they were visited, which is outside the scope of

the model presented here, as agents choose locations at random. However, what

is of interest is the similarities in temporal patterns when considering model En-

vironmental activity: the long timespans between locations in some cases (e.g.

visitor C from location 1 to 2 and visitor D in Fig. 19d, compared to agents B

and D in Fig. 19c), as well as the visits to locations done in rapid succession (e.g.

visitors A, B in 19d, compared to agent A in Fig. 19c). A significant difference

is seen however in the durations of visits/stationary activities: while observed

visits seem to last anywhere from 15 minutes to over an hour, simulated ac-

tivity durations appear more homogeneous, lasting approximately 330 update

ticks with little variation. Although this is expected, as activity durations were

not calibrated to real-world data, it nevertheless highlights a limitation of the

model’s current implementation, when examined at the level of individual visi-

tors. Therefore, while the proposed model seems to successfully capture activity

in aggregate it is less accurate on an individual basis, a common characteristic

of ABMs, whose aim is to reproduce a system’s patterns of behaviour on the

whole through simple individual rules.
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(a) Simulated

(b) Observed

Figure 18: Activity spatial pattern validation (Figure 18b from Fig. 11 in (Goličnik &

Ward Thompson, 2010))
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(a) Simulated Paths (b) Observed Paths

(c) Simulated Timelines (d) Observed Timelines

Figure 19: Agent path and timeline validation (Figures 19b, 19d from Fig. 2 in (Orellana

et al., 2012))
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5. Conclusions

This paper highlighted recent advances in the study of human spatial be-

haviour through computational simulation, and identified limitations in existing

computational analytical tools in design. In response, it presented an agent-

based model (ABM) of public space use, built using existing observations and

findings on public space use, and presented using the Overview, Design Con-

cepts, and Details (ODD) protocol, a widely accepted protocol for presenting

ABMs.

This paper presented a review of related methodologies within the scope of

spatial design and human spatial behaviour, highlighting the deterministic ap-

proach of some, the narrow focus on crowd flows of others, and some existing

individual and agent-based models of space use. However limitations were iden-

tified in reviewed approaches, which this research aims to account for. Whereas

similar approaches have focussed on simulating specific user behaviour related

to the environment of interest, this work aimed at providing a more formalized

model of human spatial behaviour in open spaces. By incorporating observations

on public space use and encoding them in abstract form, this work presents a

generalized model of collective human spatial behaviour, such that may be more

easily extended, and designed so that it may be more easily calibrated to specific

scenarios.

Multiple simulation tests were performed to verify that the model works

as expected, and to test its responsiveness to input parameters. Although the

model was presented through application to a synthetic environment and there-

fore could not be fully calibrated and validated against real-world data, never-

theless it was tested and found to perform consistently and to provide accurate

outputs, in line with expected results and inputs. Furthermore, a concise in-

put parameter sweep was performed to examine the impact of input parameter

values to model output, and simulation output was measured via Lorenz curves

capturing the spatial dispersion of activity and the degree to which agent pop-

ulation is unequally distributed, allowing for a more meaningful comparison
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of results. Finally, model output was compared to observed activity patterns

in other studies of similar spaces, and simulated spatial activity patterns were

found to match those observed in real-world scenarios.

The model was designed and implemented in three-dimensional space using

simplified mesh geometry and volumetric colliders. Due to the scale of obser-

vation of the field of interest, that being the field of architectural and urban

design, the inclusion of three-dimensional space was considered imperative for

the accurate representation of space and human spatial behaviour at this scale,

as it provides a more natural description of the system of interest, and can better

accommodate the particularities of three-dimensional spatial relationships and

interactions between humans in space (Cheliotis, 2019). Although 3D models of

space offer the potential for significantly detailed visualisations, more simplified

3D geometry was used here for reasons of computational efficiency.

Future work will move in multiple fronts, as enabled by the flexibility of

the ABM paradigm: First of all, as this model was presented using a sample

synthetic environment, no data existed for a meaningful calibration and vali-

dation of the model. However, its output and generated patterns of behaviour

were shown to be in line with results from existing behavioural mapping stud-

ies. As such follow-up work will focus on calibrating the model by applying to

real-world scenarios using data collected through site surveys of parks and open

urban spaces.

Additionally, as the overall model of public space activity is constructed as

a combination of sub-models of specific human tasks, these may be updated

independently by incorporating more advanced approaches, for example by in-

cluding more informed path-finding or movement strategies at the individual

agent level. Finally, the model presented abstracted implementations of agent

activities, aiming for a more generalized framework of human spatial behaviour,

but still stemming from typical behaviours in public open spaces. In this vein,

further research will be undertaken to identify additional spatial behaviours and

extend existing activity types, so as to expand the model scope to other spatial

configurations and environments.
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This type of model provides benefits to researchers investigating human spa-

tial behaviour in general, and may further provide a useful tool for scenario

exploration for practitioners and designers of spatial environments (architects,

urban designers), allowing them to assess the expected impact of design deci-

sions on user activity during the design stage. The next stage of this work is to

streamline the environment setup process, to allow additional environments to

be examined and expand the scope of application.
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Goličnik, B., & Ward Thompson, C. (2010). Emerging relationships between

design and use of urban park spaces. Landscape and Urban Planning , 94 ,

38–53. doi:10.1016/j.landurbplan.2009.07.016.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-

Custard, J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U.,

Jørgensen, C., Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F.,

47

http://dx.doi.org/10.3390/ijgi4031627
http://dx.doi.org/10.2307/1937992
http://dx.doi.org/10.1016/j.landurbplan.2009.07.016


Robbins, A. M., Robbins, M. M., Rossmanith, E., Rüger, N., Strand, E.,
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