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Abstract

Understanding how urban space is used by its inhabitants is vital in improving the

overall quality of a city’s built environment, as it can highlight needs and require-

ments of everyday life to be addressed in any urban development. Our investigation

of urban activity is often approached through spatial models and simulations on the

one hand, and urban data on the other. The work presented here explores potential

combinations of the two, by coupling urban models with real-time urban data feeds

for continuous short-term forecasting of urban activity.

This aim is approached through the development of a model of activity in urban

public spaces using the agent-based modelling paradigm, calibrated to real-time

data input, and applied to the simulation of current activity in public spaces at a fine

spatio-temporal scale. Observations about human spatial behaviour are identified

in the literature on public spaces and implemented within a 3D modelling frame-

work, thereby extending existing pedestrian and crowd agent-based modelling ap-

proaches. Furthermore, a review and evaluation of real-time data feeds pertaining

to activity in public spaces is performed, focussing on open and publicly available

datasets, and a forecasting model is developed using social media and other datasets

as a proxy for current user activity. The resulting real-time model of public space

activity is then evaluated through two case studies focussing on two major urban

parks in London, UK.

The model performs well in capturing park visitor activity in terms of spatial dis-

persion. Real-time data feeds examined are found to be capable of capturing park
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visitor activity to some degree; however they are found to be inadequate in support-

ing a fully fledged, detailed real-time model of public space activity.

Finally, potential future trajectories of the approaches are identified in the increas-

ing availability of online 3D mapping data when combined with advances in com-

putational efficiency and data availability, in extending current data visualisation

approaches into expansive, fine-scale simulations of real-time urban activity.



Impact Statement

This thesis presents a model for simulating human activity in public spaces in real-

time. In doing so it addresses and reviews multiple fields, and therefore identifies

potential impact in multiple instances, both within and outside academia.

In academic context, this thesis reviewed existing literature and produced reviews

of two fields: First, it reviewed findings on human activity and interaction in public

spaces, as presented in multiple studies. It produced a summary of said findings,

covering aspects of human navigation and movement in open space, grouping and

crowding behaviour in public, human-environment and human-human interaction.

Secondly, it reviewed literature on models of pedestrian movement, and produced a

summary and classification of agent-based models of pedestrian movement.

Furthermore, this work produced a real-time modelling framework for continuous

forecasting at high temporal fidelity. Preliminary work on this model including cal-

ibration and initial evaluation was presented at the 10th International AAAI Con-

ference on Web and Social Media (ICWSM)1 and a version was published at the

conference workshop proceedings (Cheliotis, 2016).

In non-academic context, this work identifies two potential applications. First, it

presents a tool for visualising park visitor activity in real-time without requiring

the installation of additional sensing and monitoring devices, relying instead on

publicly available data. Such a tool would be suitable for use in public spaces (such

as parks) to monitor visitor conditions for safety and security purposes as well as

1http://www.icwsm.org/2016/
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measuring park performance and accessibility, with minimal added cost.

Secondly, this work presents a simulation framework that captures user activity in

public spaces. Whereas existing models focus mainly on user flows, the model

presented here takes into account stationary activities and presents a more holistic

model of public space use in 3D environments. Such a model would be valuable

in the built environment and design professions, as a tool for exploring ”What If?”

scenarios and evaluating proposed designs of public and open spaces from the user

perspective.
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Chapter 1

Introduction

1.1 Research Context

For urban dwellers, a large number of daily activities occur in the urban public

space. Starting with the most frequent daily activity, navigation and movement in

the city happens almost exclusively in public space, be it cycling, driving, riding

public transport, or most importantly walking, as almost all modes make use of

streets as places dedicated to common use. In addition to movement, a wide range

of additional activities take place in the urban public space, including leisure and

recreational activities, cultural activities, information exchange, commercial activ-

ities, and social interaction, with a lot of them happening at the same time, often

subconsciously, as part of urban life.

Considering then the number of activities and interactions that are part of urban life,

it is of interest to study the properties and characteristics of cities which can have

an effect on such activities, in order to plan accordingly and provide better condi-

tions for urban dwellers. Given the importance of public spaces as the environment

which hosts such activities, it follows then that one of the main requirements of a

successful urban public space is (or at least should be) for it to be ’habitable’/usable,

or at the very least enable and allow people to ’spend time’ in it. One of the ways

that space itself can have an effect on the activities taking place in it is through
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its physical properties, which in the case of urban public spaces constitute all the

boundaries, paths, obstacles, materials, and in general the form of the space itself.

These physical properties of space, when materialized in urban public spaces, are

addressed through the field of urban design.

Urban design, in its contemporary definition, is a relatively new field which emerged

within the last century. Rowley (1994) places the emergence of the term in the

late 1950s), through the need to handle the unprecedented urbanization brought as

a result of mass industrialization. It grew extensively with the rise in popularity

of the Modernist movement and played an important part during the inter-war and

post-war periods. Following that period, contemporary urban design received major

criticism (Jacobs, 1961) and was seen as a catalyst of many of the problems evident

in cities at the time, due to their emphasis on the automobile and the disassociation

of streets and public life (Southworth and Ben-Joseph, 2003, Marshall, 2005). In

recent years however, there has been a resurgence in the need for good quality urban

spaces, as evident in various plans around the world for revitalization of areas in

decline, and the emergence of the concept of ’third’ places (Banerjee, 2001), even if

such spaces are often not public at all (e.g. Privately Owned Public Spaces (POPS)).

Urban design is an interdisciplinary field which stands at the intersection of a range

of related fields, including architecture, landscape design, urban planning, and so-

ciology among others, with many ambiguities regarding its scope and focus (Mada-

nipour, 1997). As such, definitions on what urban design is vary depending on the

starting point (Marshall, 2012). For the purposes of this work, urban design will

be considered here as the process which produces the form of public spaces at the

human scale, with a specific focus on open spaces. Given its outcome, it plays an

important part in the overall planning and shaping of the cities around us, as it has

the capacity to facilitate and define interactions both between people and the built

environment, and between people themselves.

As stated earlier, urban public spaces host a wide range of different activities. Fur-
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thermore, contemporary planning approaches in the UK often aim to include and

accommodate a mixture of different activities, for large parts of the day, in an at-

tempt to enhance the vitality of spaces. Where successful, such cases exhibit an

interplay between the different people and activities in a space, often requiring a

balanced mix between actors and activities. As such, it is hypothesized that suc-

cessful urban public spaces are able to host a large set of heterogeneous activities.

It is understandable then how the continuous study of public spaces plays an im-

portant role in improving the urban environment. However, in addition to the study

of the design of spaces, as seen in architectural and urban design theory in the past

50 years, equally important is also the study of the interactions that take place in a

space. By studying the product of urban design from a human-centric perspective,

we can examine the realized potential of a space, or how a public space is ultimately

used by its intended users. This approach highlights the impact a place ultimately

has, and can help identify successful urban design approaches and further highlight

unforeseen advantages in a particular design. Given however the complexity and

apparent randomness often evident in spaces containing human interaction, record-

ing such behaviour has often been best achieved through traditional means, such as

direct observational studies and site surveys; as usual in urban studies until recently

data collection required a clipboard, clicker counter, and a large team of people.

Therefore, a point needs to be made here, that capturing public space usage is a

task which requires substantial technical and manual labour.

Furthermore, the interconnectedness of activities and the effect different conditions

can have on the same space can make it hard to identify causality in studies of space

use. In addition to this, the rigidity of urban form does not offer a large degree

of experimentation on the part of researchers. As such, it is often hard to study

space use under extensive scientific rigour, a fact that is also evident in fields such

as ecology, social studies, etc. which focus on dynamic systems in the real-world.

This often means that space use studies will form hypotheses on the dynamics of

spatial activity, but are often unable to advance to the next step of testing them in a
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controlled environment.

Thus, two main problems in public space use studies have been identified. First,

extensive data on public space use is difficult to collect. Second, the evaluation of

hypotheses on the dynamics of spatial activity is difficult or impossible to perform

in realistic conditions. In the following sections, this work will discuss how recent

advances in computational modelling, as well as the advent of Big Data and Real-

Time urban data, can potentially provide solutions to the two problems presented

here.

Models of cities and spatial systems are important to the geographic sciences and

urban planning, especially given the rapid urbanization taking place in recent years.

A historic review of urban models would be impossible to do in this context, as

the field can be traced back to 1933 with Christaller’s Central Place Theory, or even

earlier, to 1826, with von Thunen’s model of agricultural land use, and is outside the

scope of this work. Rather, this work will be involved with computational models

of urban systems, as they have emerged in the last 60 years or so. During this time,

models have been developed which capture a wide range of properties of urban

space, from spatial economies, to traffic flows, to environmental aspects, to land

use, among others.

It is understandable then even at this point how computational modelling approaches

can be applied to the system in question here, which is public space use at the human

scale. Aspects of interest in this system include pedestrian flows, densities, use of

space and its spatial distribution, visibility, etc, and such aspects could very well

be captured and simulated in broad strokes through many of the existing modelling

paradigms. Indeed some computational approaches developed within the last 40

years have studied some of the aspects mentioned here, and in fact advanced the

field extensively, as can be seen in the concept of the isovist as used in Space Syntax

studies to measure visibility, or flow models of pedestrian movement.
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However, as stated previously, such approaches often only capture activity in broad

strokes, simulating mainly aggregate activity. During its development, the field of

computational urban modelling has moved from early macroscopic static models

of urban systems, to more recent microscopic disaggregate models focussing on

the dynamics of various urban systems at fine scales, a direction which has been

enabled in part due to advances in computing power. It is these later disaggregate

dynamic models, which have risen to prominence within the last 20 years or so,

that this thesis will focus on, as it has been demonstrated that such approaches are

much more suitable in studying a dynamic system at high spatial resolution, such

as public space use at the human scale.

One such approach which is of interest here is the agent-based modelling paradigm.

A short introduction to agent-based modelling will be presented here to highlight

its relevence in this work, with a thorough discussion offered in a following chap-

ter (section 3.2). In agent-based models, ”a system is modeled as a collection of

autonomous decision-making entities called agents, where each agent individually

assesses its situation and makes decisions on the basis of a set of rules” (Bonabeau,

2002). This microscopic approach introduces stochastic and dynamic behaviour in

the modelled system, and provides potential for the inclusion of heterogeneous char-

acteristics among the agents. As such, agent-based models can provide a test bed

for scenarios in silico, allowing for the simulation of systems that would otherwise

be difficult to examine.

With characteristics as discussed above, agent-based models can potentially be a fit-

ting analytical approach in the study of public space use. First of all, public spaces

host a wide range of heterogeneous activities within the same shared area, which

agent-based models can incorporate through agent definition. Furthermore, users

of public space act according to their own personal preferences, often by adapting

to the conditions around them. This stochastic characteristic of public space ac-

tivity can be captured again in agent-based models through the definition of agent

behaviours and interaction rules. Additionally, public spaces are inherently dy-
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namic places, with behaviour changing every minute, as a result of internal (eg.

crowding) and external (eg. weather, time of day) conditions. Again, such dynamic

behaviour is exhibited in agent-based models. Finally, observed overall activity in

public spaces is considered to be the result of individual actions and reactions, as

no single individual user is actively working towards a predefined state of overall

activity. As such, aggregate activity emerges through local behaviour, which is a

characteristic agent-based models are designed to capture.

Given the above comparisons, agent-based models can be considered a valid and

useful approach to the study of public space use as defined earlier. Furthermore,

they can offer an additional advantage to this study: They can provide a platform

in silico for conducting experiments, through which hypotheses in public space

use studies can be tested, a process which would be difficult if not impossible to

do in the real-world. As such, agent-based models can provide a solution to the

second problem of public space use studies identified earlier, as the evaluation of

hypotheses.

A final note needs to be made here regarding the development of computational

models: One important requirement for developing computational models is the

availability of extensive datasets and information on the system of interest. Such

datasets are needed for the evaluation and calibration of the model, to ensure that

a phenomenon is captured and simulated adequately, while maintaining predictive

capabilities and applicability to related scenarios (i.e. not overfitting). Therefore,

agent-based models and public space use studies share another similarity, in their

requirement for detailed datasets.

This requirement for large datasets in both public space use studies and the devel-

opment of urban models has certainly influenced the extent to which each field can

grow. Although by no means inhibitive, the relative scarcity of datasets meant that

data collection played a more integral part in the overall study, potentially affecting

the direction of the research. Under this light, it is always of interest then to examine
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potential opportunities in new data availability. One such opportunity is identified

in the wealth of data being made available today, through the rise of big data and the

adoption of information and communication technologies by cities (termed Smart

Cities) in recent years.

The advent and consequent growth of the semantic web (Tim Berners-Lee et al.,

2001) in the past decade and a half has brought about a new paradigm in regard

to communications and information exchange. Through the establishment of stan-

dards for data formats and communication protocols, it became much more feasible

to share and receive information. Furthermore, advances in mobile computing tech-

nology introduced powerful computing devices into everyday life in the form of

smartphones and handheld devices, which are able to capture, generate, and share

in unprecedented volumes of data. Finally, the development and subsequent in-

stallation of specialized sensors for the monitoring and managing of large systems

introduced networked infrastructure systems, which, when met with advances in mi-

croprocessors and networking capacity, enabled the emergence of ubiquitous com-

puting in what is now called the Internet of Things (Gubbi et al., 2013). All these

different aspects of capturing and sharing data have seen application in the urban

realm in smart city schemes, where data on urban systems is continuously used to

enhance everyday life.

Within this cloud of big data then, it is the interest of this work to identify and

examine potential datasets which might aid in the study of public space use. In-

deed, such opportunities are initially identified in various datasets: Urban transport

infrastructure systems provide frequent updates on the state of the transportation

network, environmental services provide information on the quality of the urban

environment, networking devices capture information on visitor crowds in various

places, and people themselves share information with their friends, acquaintances,

and the public, over social media networks.

In addition to the volume of such datasets, there is another characteristic that is of

notable interest to this work: Data discussed here is often shared at the moment
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of capture, with a high degree of temporal resolution. As such, these datasets can

provide us with a view into the workings of the world around us at right this instant,

i.e. in real-time. By examining and analyzing data in real-time, a simulation can

be developed to run in real-time itself, i.e. simulating the phenomenon of interest

concurrently to the phenomenon taking place. Such a prospect has the potential to

be of notable value in urban studies, especially considering the continuous predic-

tive capabilities of such models. It is then this real-time element of big data, along

with the disaggregated fidelity it brings, that this work shall focus on, for two rea-

sons: Firstly, it can provide an indicator of the small-scale system dynamics that are

of interest here. Secondly, it can help develop real-time simulations, which would

aid in the comprehension and dissemination of the finer workings of urban pro-

cesses. As such, real-time datasets can offer a solution to the first problem of public

space use studies identified earlier, along with the similar Agent-Based Modelling

requirement, that of data availability.

1.2 Research Focus

The three main fields this work will focus on have now been introduced. They are

broadly defined as follows:

1. Public Space Use Studies: The field of study focussing on human inter-

action and activity in space. This field applies a human-centric/user-centric

approach, examining interaction among the different users of a space, and

the interaction between users and their environment. Further focus is placed

on the spatial configuration of activity and interaction on the one hand, and

the effect of the physical form on said activity on the other. The majority of

studies take place in urban environments.

2. Agent-Based Modelling: A branch of computational modelling, designed to

study systems of a stochastic nature. Its defining characteristic is the investi-

gation of aggregate system properties as the result of the interaction between
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individual autonomous entities within the system, called agents.

3. Real-Time Data: Information that is published/delivered at the moment of

capture, in this case relating to information on the urban environment. Recent

advances in technological fields have made the capturing and broadcasting

of data much more feasible, resulting in the emergence of a host of services

which deliver diverse data sets and indicators of urban activity, as the activity

takes place (i.e. in real-time). This has resulted in an unprecedented volume

of detailed data on various aspects of urban activity.

Furthermore, a number of shortcomings and limitations have been identified in each

field. More specifically, data on public space use is often gathered through extensive

observational site surveys and as such is difficult to collect, while conducting further

experiments is often infeasible, due to the broadness of the field. Agent-Based

Modelling, along with other computational approaches, require large datasets, in

order to calibrate and evaluate the models.

This research will explore potential connections between the three fields, as multiple

instances have been identified where characteristics and findings from one field can

enhance and complement parts in the others. The purpose of this work is to bring

these three together, with an overall goal to develop a better understanding of how

we use our public spaces.

1.3 Aim, Structure, and Objectives

Aim This work will examine connections between agent-based models and real-

time urban datasets, applied in the study of activity in public spaces. Within this

context, the aim of this work is then to develop an Agent-Based Modelling frame-

work of Public Space Use, calibrated using Real-Time Data streams, and applied to

a simulation of current activity and conditions of public spaces; a Real-Time Simu-

lation of Public Space Activity.
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Structure This research aim will be approached through a 3-part structure linking

the 3 main fields of interest of this work. The three parts are as follows:

1. Codification of human behavioural rules in public spaces as they have

been observed and postulated in relevant literature. These behavioural rules

will form the building blocks with which the computational simulation of

public space activity will be developed.

2. Development of a Simulation Framework of Public Space Activity,

through the application of the above codified behavioural rules into an agent-

based model. This model will capture public space activity at the individual

level, and output overall spatial activity.

3. Extension of the framework into a Real-Time Simulation of Public Space

Activity, through the application of real-time data streams to the simulation

framework. Or to put it differently, calibrating the simulation to run based

on data published in real-time. This will result in a simulation which will

provide an estimation and visualisation of current activity in a space.

Objectives The overall aim will be pursued through a number of objectives, which

are defined as follows:

1. Review existing literature on studies of public space use, and identify prevail-

ing hypotheses of public space user behaviour and rules of interaction.

2. Review spatial modelling approaches, and identify appropriate methodolo-

gies for modelling the activity of individuals in public spaces.

3. Review potential real-time data sources pertaining to activity in public spaces,

and develop methodologies to capture and analyze selected datasets.

4. Develop a general framework for real-time models of public space activity.

5. Based on the outcomes of objectives 1 & 2, codify identified behaviours,

build a spatial model of public space activity, and couple with the general
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framework developed in 4.

6. Through the combination of objectives 3 & 4, couple the general framework

model developed so far with real-time data feeds.

7. Apply the real-time model of public space activity, and evaluate against real-

world conditions.

1.4 Thesis Outline

An overview of the thesis organization is presented here, as laid out across the 11

chapters. The thesis is organized in three parts: Theory, Methods and Applica-

tions. The first part, Theory, which includes Chapters 2, 3, and 4, begins with a

literature review on each of the three fields of interest: Public Space Use (PSU),

Agent-Based Models (ABMs), and Real-Time Data (RTD), and establishes the the-

oretical framework for the rest of this work. The second part, Methods, in Chapters

5, 6, and 7, describes the methodologies used to develop Agent-Based Models of

Real-Time Public Space Activity in this work, and essentially begins to formulate

the specific tools born following the theoretical investigation. The final part, Ap-

plications, which includes Chapters 8, 9, and 10, presents a record of the two case

studies undertaken in this work, along with findings and an extended discussion on

results, methods, and lessons learned. It constitutes a direct real-world application

of the tools presented in the previous part. A short description of each chapter in

the thesis is offered here, in order to illustrate how each chapter addresses each of

the thesis objectives.

The following chapter, Chapter 2: Understanding Public Space Use lays the the-

oretical groundwork of this work. It further expands on the importance of public

space through a review of prominent urban theorists’ work, and introduces obser-

vational studies as an analytical methodology to the study of urban space. The liter-

ature review focuses on studies which placed human behaviour and interactions in

public spaces as the main focal point, examined both as a result of design principles,
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and as inherent human nature within sociocultural norms. The chapter concludes

with a categorization of observations and hypotheses on what drives human activity

and behaviour in public spaces, thus fulfilling objective 1.

Chapter 3: Computational Models in Urban Studies provides a short review on

computational modelling approaches in urban studies, and a literature review of

the agent-based modelling paradigm in particular. In doing so, it examines the

applicability of the ABM paradigm to this particular scenario (public space use),

thereby completing objective 2.

Having established the area of interest and the technical/analytical tools that will be

used in this work, the following chapter (Chapter 4: On Real-Time Data) addresses

the datasets and Real-Time Data (RTD) sources that will be used. The chapter

begins with a clarification section, first by examining the different meanings of the

term ’real-time’, and second by defining the term as it will be used in this work.

Following that, RTD is identified in the contemporary context of smart cities and

the wider field of big data, and the various aspects of these multi-faceted terms are

discussed and untangled via an analysis of their apparent dichotomies. The chapter

concludes on the applicability of specific RTD sources to the study of Public Space

Use (PSU) through ABM, thus completing the first part of objective 3.

Chapter 5: Real-Time Simulation Methodologies outlines the framework for a real-

time disaggregated model of public space activity. This is achieved through a two

step process, through a predictive model of aggregate activity, followed by a spatial

disaggregation model of individual activity. This chapter provides a framework for

a Real-Time Model of Public Space Activity, thus fulfilling objective 4.

Chapter 6: Data Collection and Analysis discusses all aspects relevant to datasets

used in this work. It presents all the different data sources, along with methods

developed for collecting the data, where applicable. Initial analysis of the datasets

is also presented, providing an evaluation of the applicability scope of potential

sources. With this chapter, the second part of objective 3 and objective 6 are com-
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pleted.

Chapter 7: Modelling Spatial Behaviour focusses on the methodologies employed

in the development of spatial behaviour and activity models. It presents the de-

velopment of the ABM framework that is used in this work, which is achieved by

implementing the codified human behavioural rules identified during objective 1 in

an ABM context. With this, objective 5 is completed.

The following two chapters, Chapter 8: Case Study 1 - Hyde Park and Chapter

9: Case Study 2 - Queen Elizabeth Olympic Park, present the application of all

methodologies developed earlier to real-world scenarios, and essentially document

the development of the two case studies undertaken in this work. Both chapters

share a similar (if not yet identical) structure. The real-time model framework is

calibrated and adapted to represent activity of the area in question. Following that,

simulation output is evaluated against control real-time data. With this, the final

objective (7) is fulfilled.

The penultimate chapter, Chapter 10: Discussion on Case Studies, offers a discus-

sion on this endeavour. It evaluates the datasets used in both case studies in terms

of accessibility, applicability, veracity, etc. Furthermore, an evaluation of the devel-

oped framework and models is presented, identifying problematic areas. Finally, a

discussion on the results of the two case studies is offered, highlighting interesting

points and notes.

The final chapter, Chapter 11: Conclusion, presents a summary of the findings and

major contributions, and readdresses the statements of the opening chapter with a

critical view. It concludes with a discussion of potential future work.
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Chapter 2

Understanding Public Space Use

This chapter discusses existing literature on the study of public space use. In doing

so it establishes the base theoretical framework of this thesis. More specifically, it

establishes the relevance of this work in the greater context of planning and design-

ing communal urban spaces that are fit for use. It argues that urban public spaces

are ultimately designed and built to be used by the people of a city, and as such all

relevant tools should be employed in order to maximize the success of such spaces

in terms of end-user need fulfilment. It has been previously established that mod-

els and simulations are some of these tools available, and that their application can

enhance the place-making potential of planners and designers. With this in mind,

it is equally important then to review findings on public space user behaviour as it

has been identified through observational and empirical studies, in order to high-

light public space user needs. Such data and knowledge will play an important role

in the consequent development of models and simulations of public space activity,

as it will be used to both inform and optimize, and subsequently verify the models

developed.

The first section (2.1: The Significance of Public Space) in this chapter establishes

the importance of public spaces in urban life as the environment and mediator

through which most of urban life takes place. Furthermore, prominent aspects and

characteristics of public space are presented, as discussed by urban theorists, and
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the scope within which this thesis will approach public space is defined. The fol-

lowing section (2.2: Studying Human Behaviour in Public Spaces) reviews relevant

literature regarding human behaviour in public spaces. Literature is divided in three

parts, the first addresses the navigation and locomotion of humans in spatial envi-

ronments, the second discusses stationary and active engagement human activities

in public spaces as affected by social and design aspects of spaces, and the third

examines the apparent distances observed in social interactions. The third section

in this chapter (2.3: Categorization of Human Behavioural Observations) presents

a summary and codification of all relevant observations on human socio-spatial be-

haviour. The chapter concludes with a summary section (2.4: Summary of Public

Space Studies).

2.1 The Significance of Public Space

This section provides an overall introduction on public space. Its main aim is to

establish the significance of public spaces, with a special focus on public spaces in

urban settings. This is achieved through an outline of established theorizations of

public space, in order to identify important aspects of public spaces as they have

been identified in the past half century or so, i.e. during the most recent urbaniza-

tion process. It identifies the various definitions attributed to public space, which

oftentimes prove to be in contrast with one another. A range of dissimilar spaces are

identified that fit the different definitions presented, in order to give some concrete,

real-world examples of the many manifestations of public space.

Often the most-recognized aspect of public space is its visual aspect, perceived as

the image of the city (Lynch, 1960), i.e. public space as the set of physical charac-

teristics that allow us to identify the urban environment around us. However, many

other readings of public space exist, and in fact identifying some generally agreed-

upon definition of what public space is has proven to be a challenging task. Almost

by definition, public space is open to all, and therefore many research fields have

approached public space and the activity within it as a topic for research. While



2.1. THE SIGNIFICANCE OF PUBLIC SPACE 41

this is very encouraging, and the research and findings that come from it help us

understand cities around us and hopefully plan better for the future, it nevertheless

highlights the complexity of public space as a topic, and pushes back a definition

for it even further. As a starting point on public space from an urban design per-

spective, Carmona (2010a, 2010b) provides a review of contemporary public space

seen through the point of view of multiple urban theories.

Manifestations of public space are identified through some quite diverse and often

interconnected aspects: Functional public space (especially in urban environments)

is identified as the area allocated to the movement of individuals between private

spaces. This type of space includes the streets and sidewalks intended for the move-

ment of people and goods, with a significant part often allocated to motor vehicles,

especially in American cities (Loukaitou-Sideris, 1996). This unequal allocation of

road traffic at the expense of pedestrian traffic has been a point of criticism against

urban planning (Gehl and Gemzøe, 2000), noting the adverse effect road traffic has

on human activity (Appleyard and Lintell, 1972).

Economic space is where public space is seen as a driver of economic activity.

Such aspects are seen, for example, in revitalization and urban regeneration plans

(Roberts et al., 2016). These aim to re-introduce some value in neglected areas,

by attracting, for example, private investment (Paddison, 1993) in connection to

redesigning and upgrading the quality of urban public space. At a smaller scale,

public space is seen as a driver of economic activity not on its own, but rather

through its various other properties, which even when applied in absence of public

ownership may still drive consumer behaviour, as seen in the global example of the

mall (Erkip, 2003) and shopping centre (Lowe, 2005): while such spaces constitute

privately owned spaces, they attempt to emulate the experience of public space in a

controlled environment (Stillerman and Salcedo, 2012).

Environmental and green space is often seen as public space, as it is often identified

in natural reserves, waterways, and wildlife parks, which are often maintained by a

regional authority. However, another manifestation of green space that is of interest
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to this thesis, is urban open space seen for example in urban parks, which plays a

significant role in the sustainability of contemporary cities (Chiesura, 2004, Riddell,

2004, Karlenzig et al., 2007). As one of the few open areas in cities, they are often

perceived as being of a communal nature, open to all, even if in terms of ownership

that is not, strictly speaking, true.

Social space is identified as the space that facilitates social interaction. This aspect

of public space has been theorized as being one of the defining characteristics of

urbanity (Larco, 2003), as the space that mediates interactions with the vast major-

ity of people one encounters in everyday life in cities, most of whom are strangers.

Additionally, it has been suggested that public space use stems from the social ele-

ment of public life (Carr, 1992), and furthermore it is the accommodation of such

social interaction that constitutes whether a public space is perceived as ”good”

or ”successful” (Gehl, 1987, Whyte, 1980, Whyte, 1988). Finally, it is interesting

to discuss another point regarding social space that highlights its importance as a

defining aspect of public space, that is evident in malls and economic spaces dis-

cussed earlier: as Banerjee (2001) notes, a part of social interaction that used to take

place in public or ”third” spaces, has, with the perceived decline of public space,

moved to spaces that attempt to capture the ambience of one, regardless of whether

the space is actually public.

This listing of the different manifestations of public space is meant to provide a

glimpse of the multifaceted aspects of public space as an indicator of the immense

complexity encountered in the study of public space, and is in no way exhaustive.

Within this context then this thesis will approach the study of public space through

a subset of its different manifestations, specifically its functional and social aspects.

The reasoning behind this selection is as follows: This thesis considers the human

as the imperative component of produced space, identifying people as the final con-

sumers of space, and furthermore, this consumption of space is expressed through a

person’s physical presence in a space. In other words, this thesis assumes a human-

centric approach, as exhibited through a person’s presence in, and interaction with,
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a space. Under this approach, functional space is included as the mediator through

which people can move through and interact with the space through its physical

properties, and social space is included as the feedback parameter which heavily

influences how an individual behaves within a space inhabited by other individuals

as well.

Building on this approach, this thesis considers all social interactions as positive

feedback elements in public space use. More specifically, all encounters with oth-

ers in public spaces will be considered as positive experiences in public life, which

add to the experience of being in public. There exist plenty of examples in literature

which have demonstrated the opposite effect, and these conflicts of public space

are indeed acknowledged by this thesis as well. Examples of exclusionary and re-

pelling1 social interaction include the avoidance of neglected neighbourhoods, con-

flicting uses such as skateboarding in public parks and plazas (Woolley and Johns,

2001, Németh, 2006), the presence of ”undesirable” people and activities (Jacobs,

1961, Whyte, 1980; 1988). Furthermore, public space has been the field on which

much larger events have taken place, from civil rights movements, to occupations, to

demonstrations, which almost by definition introduce an element of conflict. Such

events have shaped public spaces to a great degree (Harvey, 2013, p. 73), and con-

tinue to affect public space use, through policies and regulations. However, these

conflicting and repelling interactions will not be the focus of this thesis, for two

main reasons.

First of all, many of the examples outlined above are not inherently related to public

space use per se. There are larger issues and conflicts at play in these instances, of a

political, social, and/or economic nature, whose resolve materializes in the common

spatial environment that is public space. It is not the aim of this thesis to address

these issues, and indeed approaching these topics holistically would be a challeng-

ing topic even in the complete extent of a work such as this. This work will limit

1Repelling interactions are considered those where the existence of one activity drives away
another activity altogether
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its scope then to such activities and interactions whose realization begins and ends

in the public space. As such, it will focus mainly on the physical properties of the

activities themselves, i.e. the functional elements of space such as distances, per-

ception and cognition, density and crowding, and not on the subcontexts of these

interactions whatever they may be, for example unwelcome/excluded activities, dis-

association with certain groups, etc.

The second argument for this approach to social interactions stems from a reading

on the elements of public life in urban contexts. Larco (2003), on discussing Ja-

cobs’ The Death and Life of Great American Cities, notes that ”Great cities are not

like towns, only larger. They are not like suburbs, only denser. They differ from

towns and suburbs in basic ways, and one of these is that cities are by definition,

full of strangers” (Jacobs, 1961). This role of the stranger is identified as repre-

senting two relationships, the stranger as something unknown, and the stranger as

something different. It is this element that differentiates dense urban places from

other environments, and it is of great importance in this case. Conflicting inter-

actions in public space as defined here are by definition exhibited between groups

with different characteristics, i.e. strangers. However, as noted here, it is these in-

teractions that manifest the multifaceted and diverse nature of large cities today. As

such, these interactions should and will be considered under the view of a positive

encounter, or at the very least a non-repelling activity.2

2.2 Studying Human Behaviour in Public Spaces

The previous section established the importance of public space in urban life, as a

container and mediator of multiple aspects of cities: Functional space, green space,

social space, economic space, among others. Furthermore, it defined urban public

2The generalization presented in this assumption has been acknowledged, and was considered
at length. The task of including conflicting and exclusionary activities was considered during this
work, and would be of great value. However, identifying and categorizing exclusionary and repelling
activities in a heterogeneous population of a metropolitan city such as London in a holistic scenario
would require a sociological and observational survey far beyond the scope of this work. For this
reason, in following sections and chapters, social interaction between individuals in public space
will assume an affirmative approach of involved parties.
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space as it will be approached in this work, focussing exclusively on its functional

and social aspects, and established its overall human-centric approach to the study

of public space. Within this context then, it becomes obvious that the examination

of public space does not focus on the space itself, but rather on the people that

utilize the space, and furthermore on the ways they engage with urban space. The

following section will therefore review studies in relevant literature that observed

and documented people acting and interacting in space, to better understand how

people use public space.

The review of human activity in public space will be divided in three categories,

covering movement, stationary activities, and interpersonal distances. Movement

and stationary activities are considered here as the two extremes in the full range

of human activity in public spaces, i.e. a person presently in a public space will

either be traversing through the space, or be actively engaged in an activity in the

space (or anything in between the two), and as such will be approached indepen-

dently. Movement in urban public space will be considered at multiple scales, both

as an activity regarding route planning and wayfinding, as well as in terms of lo-

comotion and physical characteristics of navigating a space. On the other end of

the spectrum, observations on stationary activities will be discussed mainly through

their spatial footprint and their interaction with the physical properties of the space

within which they take place. Regarding the third category, interpersonal distances

refer to the observation of specific distances in social interaction. They are highly

relevant when considering the interaction between people in a space, and will there-

fore be considered separately.

2.2.1 Movement in Urban Space

This section discusses studies and findings relating to the movement of individu-

als through space. The aim is to establish an understanding of prevailing theories

on how people navigate space. The first part focusses on spatial movement from a

neurological approach, discussing navigation and wayfinding through spatial cog-
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nition, conceptualization of space, and mental processes involved in path-planning.

The second part focusses more on locomotion and the physical act of traversing a

space, as observed in urban spaces. In other words, the first section discusses how

people navigate between spaces, while the second focusses on how people move

within spaces, identifying this distinction as a matter of comprehension related to

scale. This classification in the comprehension of space at different scales has been

discussed in literature, with researchers distinguishing between near and far spaces,

differentiating such distances as ”perceptual” and ”cognitive”, for example (Canter

and Tagg, 1975). In Montello’s (1993) scale classification terms, the first section

then deals with environmental space, a scale big enough that it cannot be compre-

hended from a single perspective, but rather requires a conceptualization and further

mental work in order to navigate, and is the space of buildings, neighbourhoods, and

cities. The second part will deal with vista space, a space of which the size and ma-

jority of characteristics can be apprehended from a single point within the space,

given the nature of public spaces often being open spaces as well.

2.2.1.1 Wayfinding and Spatial Cognition

Traditionally, spatial modelling has approached human path-finding through a ra-

tional approach, in which it is assumed that path selection is a result of a mini-

mizing process of some defined variable, for example distance (shortest path), time

(quickest path), or other cost. It has been argued however that while this approach

correlates with observed aggregate behaviour, its applicability to individuals’ spa-

tial decisions remains unclear as there might be more factors in effect, particularly

psychological and cognitive. It is suggested that people do not read urban networks

in absolute metric terms, but rather in geometrical and topological (Hillier and Iida,

2005), which furthermore introduce an element of subjectivity to spatial interpre-

tation, as each individual identifies their environment through their own cognitive

functions, creating their own cognitive map of the space (Golledge, 1999, Golledge

et al., 2000). This in turn introduces distortions on the mental representation of the

spatial environment, and therefore it has been shown (Golledge, 1995) that while
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individual subjects claim they are using the shortest path in path-finding scenar-

ios, and indeed that path may be the shortest in the individual’s mental map of

the environment, this does not necessarily correlate to shortest paths in absolute

mathematical terms. Overall the field of spatial wayfinding has been increasingly

incorporating elements of neuroscience to explore how cognitive functions affect

path-planning and navigation.

The continuous study on spatial decision-making and path-planning has identified a

number of viable strategies that have been observed to have been used in wayfind-

ing. Spiers & Maguire (2008) list a selection of the prevailing observed wayfinding

strategies, including:

1. Primary Networks (Pailhous, 1970; 1984), in which subjects rely on a familiar

network of main pathways in order to facilitate navigation.

2. Least-Angle (Conroy-Dalton, 2003), in which a path is chosen that constantly

minimizes deviation from the angle which points directly at the goal.

3. Fine-to-Coarse (Wiener and Mallot, 2003), also Hierarchical Route Plan-

ning, in which it is argued that people plan a route in fine detail that leads

out of their current ”region”, and subsequently plan a route in coarser detail

through neighbouring regions, that leads to their destination.

4. Least-Decision-Load (Wiener et al., 2004), also known as Least-Angular-

Change (Turner, 2009), where wayfinding relies on choosing the path that

requires the least number of possible decision points, for example following

a path until it comes at a right angle to the destination point, then switching

to the path that leads directly to the destination.

All of the strategies described above have been observed to be employed during

wayfinding (Spiers and Maguire, 2008). It is hypothesized that no single true strat-

egy exists, rather people rely on multiple different strategies, based on knowledge,

personal characteristics, etc. What is of further interest here is the fact that cognitive
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models of wayfinding proposed based on the above mentioned strategies exhibit a

similarity in the overall wayfinding process, observing it as a two-step process: First

the planning of the route takes place, followed by the execution of the plan (Spiers

and Maguire, 2008). Subprocesses within this overall structure exist in a hierarchy

and are executed sequentially and iteratively.

2.2.1.2 Locomotion and Human Pedestrian Movement in Urban

Spaces

Regarding group sizes first of all, previous studies (Jazwinski and Walcheski, 2011,

Willis et al., 2004, Costa, 2010, Whyte, 1988) suggest that people utilising pub-

lic/open spaces are most often found to be in small groups rather than on their own,

by a noticable amount. Furthermore, it has been observed that group sizes are be-

tween two and five people, with two-person groups being by far the most common.

Velocity: Average velocities and movement speeds have been found to be gener-

ally consistent across multiple studies, with an agreed average movement speed

observed to be approximately 1.5 m/s. Furthermore, movement speed has been ob-

served to be affected by group size, with speed exhibiting an inverse correlation to

group size (i.e. larger groups move slower). (For an extensive study on pedestrian

speed, see Ishaque and Noland, 2008, also Jazwinski and Walcheski, 2011, Willis

et al., 2004, Costa, 2010, Whyte, 1988)

Trajectory: Concerning movement trajectories, literature suggests that the main

objective when moving through open/public spaces is distance minimization. Some

studies suggest that people will follow the most direct available route to their des-

tination, especially when their goal/final destination is in sight, in which case they

will steer directly towards it. Finally, no correlation has been observed between

trajectory and group size, potentially suggesting that path planning heuristics (the

shortest path approach) in open areas are consistent between people. (Gärling and

Gärling, 1988, Jazwinski and Walcheski, 2011, Bitgood and Dukes, 2006, Gehl,

1987, Whyte, 1988)
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2.2.1.3 Summary of Movement in Urban Space

A summary of findings so far: Spatial cognition relies on the use of cognitive maps,

conceptualizations of space that allow people to plan and perform path-finding

tasks. Many strategies to path-finding exist, all equally valid. An agreed-upon

characteristic of path-finding is that it constitutes a two-step process, starting with

the planning step, and followed by the execution step.

Concerning locomotion and movement at the smaller scale, pedestrian movement

speeds in urban environments have been observed by different researchers to be

between 1 and 2 m/s, with a mean value of approximately 1.5 m/s (Ishaque and

Noland, 2008). People in public spaces are often found to be in groups, rather than

solo, with pairs being the most frequently observed group size. Furthermore, and in

connection to the observation on speed, people in groups tend to move more slowly

on average. Regarding height change, pedestrians tend to avoid sharp changes in

level, apparently preferring a longer shallow slope over a staircase. A final point is

made on trajectories, which seems to be agreed upon by multiple sources: pedes-

trians tend to use efficient trajectories and minimize the overall travelled distance.

This seems to be particularly true for open spaces, and more specifically in cases

where the goal is in sight.

This final point is of some interest here, as it illustrates a difference between move-

ment at different scales: Literature on path-finding and navigation aspects of move-

ment agrees (Golledge, 1995) that minimizing path distance is often reported by

subjects, but rarely observed. This can be attributed to limited knowledge and dif-

ferences between perceived and actual distance. Conversely, on aspects of loco-

motion and movement in smaller spaces (i.e. Montello’s (1993) vista space), the

shortest path seems to be the prevailing movement strategy.
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2.2.2 Stationary Activities in Urban Space

In this section, the literature review turns its focus on existing research covering

human spatial behaviour regarding spending time in public, with a specific focus on

stationary activities. The work of two prominent researchers is studied extensively

here, that of American urbanist William Hollingsworth Whyte, and Danish architect

and urban planner Jan Gehl, both of whom applied a human/user-centric approach

in their studies of public spaces, focussing their studies on how spaces are ultimately

used by their visitors. Their observations offer an invaluable record of human spatial

activity, which can be further expanded upon in order to study how the design of

spaces affects their use.

The following sections present some interesting findings on crowd behaviour in

public spaces, focusing on stationary activities. Main sources for this type of data

are direct observation studies and surveys of such places, carried out by researchers

and urban planners in attempts to identify quality indicators for public urban spaces.

Such studies offer some interesting insight into peoples behaviour in public, as

sometimes records indicate behaviour different from expected. Such surveys had

the main research objective of establishing some form of public space quality indi-

cators, and as such were mainly focused on the space, using crowd behaviour as an

indicator. However, the codification of crowd behaviour itself, that allowed it to be

used as a proxy for quality, can be used in user-centric studies and models as well,

and may offer some insight in developing simulations of such spaces.

Jane Jacobs, in The Death and Life of Great American Cities (1961), observed a de-

cline of the quality of urban life, and attributed it to orthodox modern city planning

and architectural design. Although generally discussing the physical built environ-

ment that resulted from the urbanization and rapid expansion in U.S. cities, her work

focused equally on non-physical relationships as well, when observing for example

that social encounters and relationships at a neighbourhood level have a positive ef-

fect on urban life. Along with other observations similar to this, it was identified that

social aspects of urban life are at least equally important to physical. Nico Larco
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(2003) makes this point clearer, by offering a definition of an urban environment

that includes interaction, not form, as a defining characteristic. Furthermore, he

identifies urban in sociological terms, as ”the concentration of potential and forced

interactions” between individuals, in cases where the density is such that individuals

are constantly faced with interactions.

These potential and forced interactions are expressed in the common ground that is

the urban public space. Studies have attempted to identify characteristics of space

that might affect interaction and social behaviour, and the following sections will

discuss observations and findings from such studies. One important note needs to

be made here, however, that the studies referenced here were conducted in different

cities across the world, but always in countries of the western world. As such,

any notes and observations on human behaviour may only hold true in scenarios in

western cultures, as different cultures may present different values and perspectives

regarding concepts such as personal space and behaviour in public.

2.2.2.1 Different states of moving and standing

Hall (1963, 1966a) identified another interesting characteristic of public behaviour

in regard to the perception of personal space in different cultures. In western cul-

tures, when a person is sitting or standing in public they occupy not only the physical

volume of their body, but a conceived sphere around them, roughly coinciding with

the personal distance zone discussed later. This observation is confirmed by W. H.

Whyte’s observations (Whyte, 1980) on people standing in pedestrian flows: Pedes-

trians would alter their paths to avoid bumping into people standing in their path,

or at the very least (surprisingly, to the surveyors) they would apologise, as if they

were invading the others personal space. This right to personal space is generally

accepted in western culture. Interestingly, however, it is only observed while a per-

son is stationary. If a person is moving, personal distances seem to shrink. Although

this remains generally undocumented, it can be observed in contrasting situations,

such as crowded sidewalks or train stations, where people on the move form much
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denser crowds and brush against one another, while people standing allow for some

room between them, keeping densities lower.

2.2.2.2 The 100 percent location

A basic question regarding activities in public space is where people actually situ-

ate themselves in space when they engage in a short static activity, such as having

a conversation. This was answered by William H. Whyte (1988), when his group

were examining standing sidewalk behaviour. The original assumption was that

people will move a short distance out of the main pedestrian flow to engage in con-

versation. Instead, it was observed that people interacting in groups will stay right

in the middle of pedestrian flow. A similar observation has been made regarding

unplanned interactions between people in other environments such as workspaces,

where people tend to interact with one another mainly at areas of high visibility

(Sailer et al., 2016). This has been noted by others as well (Gehl, 1987, Ciolek,

1976, in Whyte, 1988, p. 9), and this tendency for people to stay in or very near the

main pedestrian flow has labelled such spots as ”the 100 percent location”. Fol-

lowing this observation, it was hypothesised that some of the most crowded places

in stationary activities as well must be street corners, owing to two pedestrian flows

meeting perpendicularly. This configuration increases the chances for random en-

counters, and thus such short interactions seem to cluster around the areas with the

most traffic.

Although one might consider that such behaviour would pose a great annoyance to

moving pedestrians, it seems not to be the case. When moving pedestrians were

observed in the same scenario, Whyte’s group observed that people would alter

their path to avoid walking into people standing. This observation seems to relate

to the notion of personal space, and is presented more thoroughly by E. T. Hall in

his work on proxemics (1966a) later discussed in this chapter. Finally, what might

be extracted from this observation is that people might perceive others around them

as being in a different ”state”, depending on whether one is walking or standing.
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2.2.2.3 On standing in public

This behaviour of standing is observed to change when the survey switches focus,

from sidewalks and pedestrian flows to open public spaces. Standing in open spaces

is usually associated with a waiting act, for example one might be waiting for an

acquaintance, looking up information, or some other activity that is to complete

soon. A characteristic edge effect is identified by (Gehl, 1987), when people are

observed to stand in open spaces. This is described as the tendency to stand near

an edge of the space, such as a wall, facade, entrance, etc. According to Gehl, such

spots provide the best conditions for someone to have a good overview of the area,

while at the same time minimising exposure. It is further noted that even when such

hard edges are not available, people will situate themselves around a feature in the

space, such as a column, tree, or lamp, to avoid putting themselves in a situation

where they stand out.

2.2.2.4 Seating preferences

The act of sitting is another aspect of social behaviour in public spaces, and is

regarded slightly differently than the act of standing, for a few reasons. First of all,

the decision to sit somewhere signifies a lengthier duration of the reason for being in

that area, for example having lunch, reading, or waiting for an acquaintance that is

running quite late. This in turn might enable a person to assess the different options

in a space, and since they will be staying in the area for a while, to choose the best

option according to their own criteria (such as the least crowded, best view, in the

shade/sun, etc). Nevertheless, the number of people sitting in an urban space is

generally used as an indicator of the attractiveness of the space, and this process of

seating choice might be an explanation of this indicator. 3

Gehl notes that observed preferences for sitting in urban spaces are quite similar

3Further to this, Whyte (1980) has noted and the Project for Public Spaces (2000) has elaborated
on additional indicators of successful public spaces: in addition to the number of people sitting in
a space, the composition of the group can provide indications of successful spaces. More specifi-
cally, successful spaces tend to have a higher proportion of people in groups, a higher than average
proportion of women, and also people of different ages.
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to the ones observed for standing. He writes: ”places for sitting along facades and

spatial boundaries are preferred to sitting areas in the middle of the space, and as in

standing, people tend to seek support from the details of the physical environment”

(Gehl, 1987, p.157). Furthermore, seats that offer a good uninterrupted view around

the area are usually much more preferable as they allow people to see any interest-

ing events that take place in the area. Additionally, such seating arrangements might

emerge from people’s tendency to maximize access to others while minimizing ex-

posure (Sailer and Psathiti, 2017). This preference might come from the willingness

of people to passively participate in social life, and has been observed by Jane Ja-

cobs as well, who writes: ”Large numbers of people entertain themselves, off and

on, by watching street activity” (1961, p.45). Codifying this observation, it might

be described as such: Given different seating options in an area, with all else being

equal, the one offering the best view of the area will be generally more preferable

to a person.

Whyte also verifies this observation somewhat, when correlating seating areas and

pedestrian flow. He writes (1980, p.33): ”All things being equal, ...where pedestrian

flows bisect a sittable space, that is where people will most likely sit.” This generally

identifies an entrance (or as close to it) to a space as an attractive sitting space, as it

fulfills some of the criteria mentioned earlier as well: It is near an edge or boundary,

it offers a good view of the area, and it is near pedestrian flow. It can be safely

assumed then that when people decide to occupy a space in public, they will orient

themselves towards interesting events in the area, and oftentimes such events can be

simply the existence of other people in the area. Or to put it simply, ”people come

where people are” (Gehl, 1987, p. 25).

2.2.2.5 Crowding: emergent order in seating patterns

Whyte further observes a form of collective organisation regarding the seating pat-

terns of people, while studying public spaces in downtown New York. In his work

”The Social Life of Small Urban Spaces” (1980), he provides a detailed descrip-
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tion of how people distribute themselves on a single ledge of the Seagram Plaza

(Figure 2.1). This ledge had been previously observed as being a favorite spot for

people to sit in the area, and a detailed recording of seating patterns was performed,

captured through time-lapse photography. The seating patterns were then plotted on

a time graph, capturing a typical business day from early morning until late in the

afternoon.

Figure 2.1: Seating patterns over time on a ledge at Seagram’s Plaza, New York (Whyte,
1980, p. 70).

In analysing this graph, some interesting observations arise regarding the seating

patterns. First of all, as is expected, the number of people sitting is generally low,

as is expected in a weekday during business hours. There is a sudden rise in volume

around lunchtime, approximately from noon until 2 in the afternoon, as is expected

from people having their lunch. During this peak time however, the number of peo-

ple sitting remains constant, and arguably more interestingly, it is well below full ca-

pacity at all times. Furthermore, it is also of note that people were constantly leaving

with others taking their place, so this stability in capacity was not due to long-term

occupiers. These detailed observations hint at a form of self-organisation, where

effective capacity seems to be determined and maintained collectively, through the

application of every individual’s personal space.
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2.2.3 Distances in Social Interaction

Further insight on the way space affects social interaction can be gained from stud-

ies on proxemics. The term was coined be E.T. Hall, and was defined as the interre-

lated observations and theories of peoples’ use of space as a specialized elaboration

of culture (Hall, 1966a). Its main focus is on the perception of distance between

persons engaged in social interaction, and further on the expected behaviours and

significance of different distances. Hall studied behaviour and social interaction in

mainly western societies, so any interpretation may not apply to different situations,

as different cultures may hold different views on personal space and behaviour in

public.

Hall identified four distinct distance zones, which are generally obeyed by humans

in social interactions. They are labeled intimate, personal, social, and public, and

correspond to the level of intimacy between different individuals. These zones co-

incide with distance zones observed in the animal kingdom as well, with the main

differences being observed in reactions to close distances, where for example flight

and attack distances seen in animals are largely absent in humans. The four main

distance zones are described as follows:

Intimate distance (0-0.45 m): This is the distance between persons where intense

feelings are expressed, such as tenderness, love, or anger. Interactions within this

distance are not usually observed in public, due to their intimate nature. Also, when

this distance is trespassed, individuals feel physically uncomfortable.

Personal distance (0.45-1.2 m): This is the distance for conversations between close

friends and family. Friends in small groups in public places will generally situate

themselves close to the edge of this distance from each other (approximately 1-1.5

meters). Usually, if a stranger needs to cross this boundary, they will apologise, as

a sign of unwittingly invading personal space.

Social distance (1.2-3.6 m): This distance zone holds semi-formal interactions and

conversations, usually between acquaintances. Individuals within this distance are
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acknowledged as being in a group. The outer zone of this distance is one of the

most comfortable distances to keep in public, allowing for interaction, while at the

same time not breaching one’s personal space.

Public distance (3.6-10 m): This distance zone is used in more formal situations

in interactions. In public, this is the distance at which people are acknowledged as

being in the same place. Apart from formal situations, people within this distance

zone are not acknowledged as forming a group.

The four distance zones presented here constitute observed distances in active so-

cial interaction, i.e. between people actively participating in an exchange, roughly

corresponding to what Ciolek (1983) classifies as an ’activity’. In addition to this,

there exists a form of passive social interaction, relating more to the acknowledge-

ment of other people in space. These spatial aspects of indirect social interaction

are recognized to take place within distances of up to 100 meters by some (Gehl,

1987), or 100 yards (roughly 90 meters) by others (Ciolek, 1983), and have been

described as ’the social field of view’ (Gehl, 1987) and the ’field of co-presence’

(Ciolek, 1983). This distance zone is identified as the distance within which people

acknowledge others around them as being is the same space, and is generally under-

stood to be limited by the distance over which it becomes impossible to determine

personal characteristics of a person (e.g. age, sex, or identity).

More specifically, Gehl describes (1987, p.65) roughly three discrete zones within

the social field of vision, labelled here as active interaction distance, spectating

distance, and acknowledgement distance.

Active Interaction Distance (0-7 m): This is the distance within which contact and

communication between people takes place. Interaction within this distance uses a

range of sensory inputs, including aural and olfactory, in addition to the main visual

input which at these distances can perceive small nuances and emotional responses.

It relates to active communication, for example a conversation, a transaction, and
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its limit broadly coincides with the upper limits of Hall’s observed public distance,

which might stretch up to 10 meters depending on occasion. People being within

this distance are generally then understood as being in a group and engaged in an

activity.

Spectating Distance (7-70 m): This is broadly the distance range within which peo-

ple are able to identify other individuals’ characteristic, identities, and activities,

while not being actively engaged in an activity with them. This zone can be broken

down into two sub-categories, near (7-35 m) and far (35-70 m). Near spectating

distance is identified as the maximum range within which interaction can take place

that includes hearing, although at a limited capacity, for example in a lecture sce-

nario (one-way communication, or possibly a question-and-answer situation). At

distances closer to 20 or 25 meters feelings and moods can be perceived. Far spec-

tating distance concerns the distance at which people can be perceived as individ-

uals, and their intentions, actions and activities can be discerned, for example in a

sport activity.

Acknowledgement Distance (70-100 m): This is the extent within which figures

can be perceived as distinct individuals, and are acknowledged as being broadly

in the same space as the observer. No meaningful interaction can take place at this

distance. The 100 m mark can be considered as the maximum distance within which

social interaction (even passive perception of others) can happen.

This rough classification of spatial extents in social behaviour is identified in works

on proxemics as well. Ciolek (1980, 1983) identifies different types of space con-

cerned with the interaction between individuals, primarily at the perceptual level,

and secondarily at their spatial manifestation. The first level of interaction is defined

as an f-formation (Ciolek and Kendon, 1980), and relates to individuals actively en-

gaged in interaction with one another (Figure 2.2). Moving from the interaction

outwards, the first order in the typology includes ’r-space’, which spatially encom-

passes ’p-space’ and ’o-space’. O- and p-space refers to the area between indi-

viduals actively engaged in an activity, along with a buffer zone of personal space
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Figure 2.2: An Individual and an F-Formation (Ciolek and Kendon, 1980).

surrounding them. R-space refers to the buffer zone around p-space which defines

the ensemble of individuals and activity into a discernible whole.

Figure 2.3: Three Zones of Co-Presence (Ciolek and Kendon, 1980).

The second order of typology refers to the space around this group of interacting

entities, termed the spatial zones of co-presence, and includes a- b- and c-space

(Figure 2.3). C-space refers to the immediate space around the group which, al-

though not claimed by the activity, is nonetheless monitored by the individuals, and

acts as a transitional space between the group and the rest of the environment. B-

space refers to the extent of space around the group that is detectable by the senses,
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but has no immediate effect on the group interaction; it is recognized as ’being

there’. Finally, the concept of a-space is also postulated to complete the scheme,

and refers to the space outside the area detectable by the senses (outside of b-space),

it is not detectable, and has no effect on the group interaction.

Although the proxemics lexicon does not generally attach spatial units to space

types, the subcontext and perception of the characteristics of each space type allows

us to draw similarities with the distance subdivisions in the social field of vision. As

such, o-, p-, and r-space can be considered as applicable to Hall’s Intimate, Personal,

and Social Distance, 0-3.5 m, while c-space corresponds potentially up to the full

extent of Gehl’s Active Interaction Distance at 7 m, or the full extent of Hall’s Public

Distance at 10 m. B-space encompasses Gehl’s Spectating and Acknowledgement

Distances, up to 100m, and by definition anything outside this range is considered

a-space.

The classification of distances described above, is by no means exhaustive. How-

ever, as the authors note themselves, it can adequately serve as a general reference,

when designing with humans in mind.

2.3 Categorization of Human Behavioural Observa-

tions

This section revisits the observations discussed in the preceding section through a

reformative technical scope. The various notes and observations are restated in a

technical definition, in order to begin shaping a formal vocabulary of human social

spatial behaviour. These definitions will be implemented in later chapters as heuris-

tics and behavioural rules in the development of computational models of human

spatial activity.

Regarding movement: Human wayfinding in spatial environments involves a two

step process. During the first step, a formalized conceptual representation of space
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is used to plan the overall path as a series of steps between connected locations. This

process requires some knowledge of the environment within which the origin and

destination lie, and it takes place at a larger scale, thus requiring a mental/conceptual

representation of the environment. The second step involves the execution of the

plan. It includes the actual movement and locomotion through space, implementing

a series of additional subprocesses such as obstacle avoidance, and takes place at a

smaller spatial scale, specifically the immediate environment as identified by direct

human senses.

Concerning locomotion, the average human walking speed in urban environments

has been observed to be approximately 1.5 m/s, and affected by a number of char-

acteristics, such as age, group size, and trip purpose. Sharp changes in level have

been observed to be avoided by pedestrians when a better alternative presents itself.

Regarding movement within spaces, the majority of pedestrians will move directly

towards their goal via the shortest path, if the goal is within vision, and a viable path

exists.

Moving and standing are identified as being different states, and are treated dif-

ferently by others. Specifically, in stationary activities, people claim a larger area

around them, which forms part of the activity for the duration. Furthermore, this

area is generally avoided by others, and is treated as an obstacle in their course, and

unavailable area for any activity.

Regarding the locations of stationary activities including seating and standing, lo-

cations seem to differ depending on context. In short activities such as a pause for

a conversation, the location is identified to be in the middle of a pedestrian flow,

and is more evident in intersection layouts such as street corners. For activities of

a longer duration, people seem to gravitate towards edges of a space, such as walls

and ledges, or other identifiable features, such as lamp posts, benches, etc., moving

away from the pedestrian flow. Regarding seating preferences, people tend to pre-

fer locations close to the edges of a space, if such are available, similar to standing

activities. An additional characteristic of seating location preference is observed
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in regard to visibility from the location, and specifically the number of people and

activities visible from a potential seat, as people tend to prefer locations which offer

a view of the most activities and other people.

Regarding the observed distances in social interaction in public spaces, the overall

functional distance range is identified to be between 0 and 100 meters. Distances

of up to 7.5 meters are mainly reserved for acquaintances and people generally

involved in a common activity, and potentially smaller (3.5 m) where no additional

space is available. Between 7.5 and 35 meters, other people and the activities they

are engaged in can be identified and observed, and potential engagements can take

place in the form of one-way interaction and communication. Distances between 35

and 70 meters allow for acknowledgement of activities and potentially spectating of

any activities that take place, but do not allow for any interaction. Distances between

70 and 100 meters allow for the acknowledgement of other people, and registering

them as being in the same space.

2.4 Summary of Public Space Studies

A summary of the contents of this chapter is offered here. Starting with an overview

of the many-sided manifestations of public space, the complexity of public space

was recognized from the starting point, identifying the fact that no single com-

prehensive ’correct’ definition can be postulated. The human-centric focus of this

thesis was established, and by this definition, the functional and social aspects of

public space were identified as most relevant to this study.

Following this, a review of existing work on human spatial behaviour in public

spaces was presented, discussing important findings of the past few decades. Focus

was placed on existing literature that highlights observations on human wayfinding

and movement, the use of space and interaction with the built environment within a

social context, and the apparent distances observed in human interaction.

The majority of studies discussed in this chapter rely on observation and empirically
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gathered data. Finally, the observations were restated in a formal definition, in order

to build the technical vocabulary which will inform the rest of this work, and serve

as the basis for the rest of this work. As a next step, these observations will be

implemented in computational models, which will allow the testing of hypotheses

in a virtual environment. Furthermore, the behavioural rules identified here will be

embedded in simulations of real-world urban spaces, calibrated to real-time data

streams of urban activity, in order to develop real-time spatial simulations of urban

activity.





Chapter 3

Computational Models in Urban

Studies

This chapter offers a review on models developed for the study of urban systems,

with a specific focus on models able to capture human behaviour and interaction

in spatial environments. The previous chapter (Chapter 2: Understanding Public

Space Use) established the importance of public space as the environment mediating

a wide range of urban activity, and identified a number of rules observed in human

behaviour and interaction in public space. This chapter will discuss the tools and

methodologies available in the analytical toolkit that can be of use to the study of

Public Space Use (PSU), and will especially focus on methodological approaches

aiming at capturing processes as they emerge from the bottom-up.

In order to achieve these aims, this chapter is divided into 4 sections. The first

section (3.1: On Spatial Modelling) begins with a short review on the evolution of

spatial and urban modelling, focussing on a historic overview as well as conceptual

and academic spatial modelling aims. In doing so, it will highlight the trend to-

wards capturing systems at ever increasing detail and simulating the dynamic nature

of such systems, as exemplified by recent advances in modelling approaches cap-

turing the behaviours of a system’s individual constituents, collectively categorised

under the term Individual-Based Models (IBMs). A short discussion will follow
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on the three main categories of individual-based models, in which the agent-based

modelling paradigm is introduced.

The second section (3.2: On Agent-Based Modelling) offers a discussion focussed

exclusively on Agent-Based Models (ABMs), beginning by discussing definitions,

main characteristics, and system applicability of ABMs. Following that, this work

presents an overview on the treatment of different aspects in ABMs, more specif-

ically discussing how spatial and temporal aspects are approached, as well as dis-

cussing matters of scale. The section closes with a discussion on ABM practices

observed in the literature, noting the on-going critique against the lack of proper

documentation in published ABM work, and presents different attempts at stan-

dardizing or at the very least developing a set of guidelines in the field of ABM.

The third section (3.3: Applicability of ABM in Public Space Use Studies) argues

how the ABM paradigm can be applied to the study of Public Space Use (PSU).

It begins with a literature review of related ABM applications, as identified in the

field of pedestrian and crowd modelling, in order to highlight the scope and detail to

which spatial behaviour and interaction can be captured at the human scale. Next, it

attempts to combine the methodologies presented here, with findings and observa-

tions on human behaviour and interaction in public space as outlined in the previous

chapter, beginning to form the core for the development of Agent-Based Models of

Public Space Use, which will be further expanded on in Chapter 7: Modelling

Spatial Behaviour.

The chapter concludes with a final section (3.4: Summary of Computational Models

in Urban Studies), which summarizes the content presented in this chapter.
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3.1 On Spatial Modelling

3.1.1 Historic Overview of Computational Spatial Models

Although some of the earliest documented geographic models can be identified in

von Thunen’s agricultural land use model formulated in 1826 (von Thunen, in Hall,

1966b), contemporary approaches in spatial models are generally identified to have

their beginnings in the 1950s (Batty, 2008). Models at that time were concerned

with predicting future urban growth in terms of transportation, to anticipate and

plan for the automobile. Such models were soon coupled with land-use to predict

where people would move to based on the distribution of urban functions, giving

rise to Land Use Transportation Interaction models (Iacono et al., 2008). Although

such approaches were generally found to be too static, with a small set of fixed

predictors (land use) used to predict a variable (transportation), and therefore fairly

inflexible and coarse to apply to urban planning, they led to the continuing devel-

opment of more integrated, scaled-down models which could be used in smaller

regions (Berling-Wolff and Wu, 2004). Additionally, the development of more ef-

ficient computing systems since the 1980s allowed researchers to explore relation-

ships between different actors of urban systems in greater detail: Where previous

models worked on the premise of equilibrium, newer approaches allowed modellers

to explore feedback between actors and system dynamics by disaggregating entities

and exploring change over time. The development of the field of spatial modelling

is being actively documented and updated constantly (as offered in the literature

referenced in this paragraph, as well as a comparison between different urban mod-

elling approaches by Haase and Schwartz (2009)), and it is not the aim of this

work to provide a comprehensive overview of this field. This work is focussed in

the most recent advances as seen in disaggregated dynamic models, and the short

historic overview presented here helps to provide the context through which these

models have emerged. As such, as noted by Batty (2012), the overall trend in the

development of computational spatial models throughout the past 50-60 years can

be traced:
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... there has been a sea change from aggregate cross-sectional compar-

ative static models of spatial systems to models that are disaggregate

and dynamic.

From Land Use Transportation Interaction, through spatial econometrics models

and systems dynamics models, to IBMs, the above trend can be identified in broad

terms. Different modelling approaches often merge and combine for specific ap-

plications, and rarely any standards can be identified for any of the approaches

discussed here. This modelling timeline presented here loosely follows both the

historic as well as the conceptual progress in urban and spatial modelling. As tech-

nological advances have allowed for more computing power, and thus for more

computationally demanding (i.e. detailed) models, so has a general interest arisen

in recent years, regarding the small scale mechanics of systems, which are increas-

ingly being identified as of vital importance to the overall system. This conceptual

approach to urban systems analysis is alternatively referred to as a bottom-up ap-

proach, where the overall system properties and characteristics are assumed to be

largely derived from the actions, reactions, and interactions of its autonomously

functioning individual components1.

The applicability of IBMs to the study of spatial systems and processes has been

noted numerous times (Benenson and Torrens, 2004, Batty, 2005), especially when

the system of interest involves urban environments, or more specifically human in-

teraction (Heppenstall et al., 2016). The ability of an IBM to capture and simulate

emergent behaviour is of notable value for the task of simulating urban/human sys-

tems, given the complex nature of such systems. The interest of this work is to

study, understand, simulate, and ultimately predict human spatial activity in urban

environments. It is evident then that IBMs are a valid tool for this work. As such,

in the following section, a review will be offered of the main methodological ap-

proaches identified in IBMs.

1In contrast to top-down approaches, especially found in planning, where a system is ana-
lyzed/designed by focussing proportionately more on the large scale properties
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3.1.2 Individual-Based Modelling Approaches

Having traced the spatial modelling timeline and its current branch of disaggregated,

dynamic models as identified under the umbrella term of IBM, this section will ex-

plore the three prevalent methodologies within this field: Cellular Automata (CA),

Microsimulation Models (MSMs), and Agent-Based Models (ABMs). This review

will discuss the overall approach of spatial system modelling from the perspective

of the individual, and highlight differences between the three methodologies, in or-

der to identify the ones best suited for the purposes of this work, that of simulating

users of urban public space.

3.1.2.1 Cellular Automata

The concept of Cellular Automata (CA) was first introduced by von Neumann in the

1940s with further notable work by Wolfram (1984). CA models refer to systems

that function based on the discretization of space and time. Spatially, CA consist

of a regular grid of cells, which hold discrete values (in their most basic form, CA

cells can hold either 0 or 1 values, if functioning in a binary system). The cells all

update simultaneously, after calculating their next value according to the values of

cells in their neighbourhood, and also the set of rules that describe the model. This

discretization of space, time and state makes CA models ideally suited for large-

scale computer simulations (Zheng et al., 2009). Furthermore, it has been shown

that CA models can be applied to crowd evacuation scenarios, with consistent re-

sults between simulations and experiments (Zheng et al., 2009). However, due to

their simple approach, CA usually assume homogeneity of the crowd they simulate.

Furthermore, they pose a serious limitation, in that they can function mainly in two-

dimensional space; otherwise, a three-dimensional space needs to be simplified to a

two-dimensional representation in order to provide a grid for a Cellular Automaton.

The use of CA in urban and spatial systems has been well documented (Benenson

and Torrens, 2004, Iltanen, 2012).
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3.1.2.2 Microsimulation Models

The term Microsimulation Model (MSM) is often used as a general term to group

disagreggated, dynamic models focussing on individual entities and bottom-up pro-

cesses. Therefore at times it seems to encompass CA as well as ABMs. When

examined through their application to spatial systems (Birkin and Wu, 2012, Wu

and Birkin, 2012, Crooks and Heppenstall, 2012), it becomes clear that MSMs are

their own category of IBM, distinct from both CA and ABMs. As a rough definition,

MSMs simulate individual entities which function in and react to a virtual environ-

ment. In contrast to CA, MSMs make a specific distinction between environment

and entity, and additionally individual entity definition allows for heterogeneity be-

tween entities. Furthermore, MSMs are not restricted to rigid grid space, and can

indeed function as a-spatial systems. On the other hand, they have a set of dif-

ferences to ABM as well. While ABM focus on entity interaction and inter-entity

feedback, in MSMs the focus is placed on the effects that environmental changes

may have on different types of individuals. In other words, MSMs are focussed

on entity-environment interaction, in contrast to ABM where interest is placed in

entity-entity interaction as well.

3.1.2.3 Agent-Based models

In the context of this work, Agent-Based Models (ABMs), are autonomous rule-

based models which model pedestrians and crowds by simulating individuals as

virtual agents. In autonomous models, individual agents are bestowed with rules

governing the interaction with other agents in the crowd, as well as with the envi-

ronment. The rules of behaviour for individual agents are usually implemented in

the form of decision trees (Torrens et al., 2012), and pedestrian agents employ a

hierarchy of high to low level functions (Pelechano et al., 2007), such as navigation

and decision-making (high level), or perception and collision avoidance (low level).

ABMs are noted for their capabilities in allowing for a great amount of heterogene-

ity between individual agents. However, this characteristic of individual simulation



3.2. ON AGENT-BASED MODELLING 71

is extremely computation intensive (Bonabeau, 2002, Zheng et al., 2009), and even

more so in models that run in real time.

Bonabeau (2002) provides an excellent review of the Agent-Based Modelling

framework. First of all, he notes that ABM marks a change of perspective, in that

ABMs attempt to describe a system from the perspective of their constituent units.

Furthermore, he summarizes the benefits of ABMs as follows: i) ABM captures

emergent phenomena, ii) ABM provides a natural description of a system, and iii)

ABM is flexible. For the purposes of this work, the first two points provide excel-

lent insight: In i), Bonabeau (2002) argues that ABMs attempt to describe social

phenomena, not from a traditional modelling perspective, but with the challenge of

reproducing (or growing) them. Furthermore, in ii), it is argued that ABMs are most

natural in describing a system composed of behavioural entities, in the sense that

agents are the active entities, functioning within the confines of a passive (static)

environment, which, at least for the purposes of pedestrian and crowd modelling,

provides an accurate description of such a system.

3.2 On Agent-Based Modelling

This section discusses the ABM approach and its applicability in more depth.

3.2.1 Agent-Based Models

An Agent-Based Model (ABM) attempts to model a system as the collection of

autonomous decision-making entities called agents (Bonabeau, 2002). The agents

function within the confines of their environment, which is the system being mod-

elled, based on their individual assessment of the system and a set of predetermined

rules. A loose definition of an ABM may therefore be: A description of a system,

comprising of autonomous entities AND their interactions.

An ABM consists of two parts, the System and the Component, or otherwise the

Environment and the Agent. The relationship between this duality of elements is
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the defining characteristic of the ABM approach. On the one hand, the System

defines the extents of the environment within which the agents interact, provides

input for the agents, and presents aggregate properties for the whole model. On the

other hand, individual agents receive input from the environment and other agents

and function according to their set of rules, and in doing so provide the overall

system its properties.

In this relationship, the different parts (the Environment and the Agents) function

on a need-to-know basis. More specifically, the environment does not hold any

definitions about the individual agent behaviour (eg. the agent behavioural rules and

preferences), and as such cannot calculate the overall outcome of the model. The

environment part however can exhibit the overall state of the System, by aggregating

the individual Agents properties at any given time step in the model.

In the same manner, it is the agents that contain the definitions for their behaviour,

expressed as a decision tree that can be stated in an if-this-then-that form. Individual

agents have no knowledge of the system as a whole, but rather rely on their ability

to identify their local environment enough to make a decision regarding their next

action. This bestows agents with the ability to gather information, and define the

”this” part of the above statement, setting the conditions to which they respond to.

Additionally, agents can hold individual preferences which define the ”that” part of

the above statement, and allow them to perform different actions in response to their

input.

In an ABM, the calculation mechanics are essentially transferred to the smaller

entities that are the agents. In doing so, the calculation mechanics (expressed

through the agent decision trees) simplify, but at the same time are spread across

a large number of actors/agents. This system dynamic can exhibit fairly complex

behaviour, even in models with simple agent rules (Reynolds, 1987). It is this char-

acteristic of ABM (simple decisions across multiple actors) that makes them ex-

ceptionally good at capturing emergent properties of systems. As such, ABM are

becoming the de-facto approach to modelling bottom-up systems, where
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one models and simulates the behavior of the systems constituent units

(the agents) and their interactions, capturing emergence from the bot-

tom up when the simulation is run. (Bonabeau, 2002).

In the following sections, different elements of ABMs will be discussed in more

detail, in order to highlight how concepts about the real world are incorporated in

models. More specifically, the next three parts will offer an overview of how con-

cepts of space, time, and scale are implemented. Furthermore, they will highlight

the abstractions and definitions that are necessary in order to incorporate such con-

cepts in a manageable and practical manner, and will additionally show how differ-

ent definitions for these aspects can have a significant effect on model mechanics.

3.2.2 Space in Agent-Based Models

This section will discuss spatial aspects in ABMs, and the different ways physi-

cal space is treated in computer simulation. In models that incorporate spatial as-

pects, inter-agent as well as agent-environment interactions are influenced by the

knowledge each agent has about its environment. Such knowledge in ABM is often

gathered through an agent’s scan of its surroundings, and therefore the methods by

which space has been defined (and therefore the way by which an agent gathers

information about the world around it) can significantly affect how a model works.

The rest of this section will discuss: fragmentation of space, i.e. the existence of

a threshold at which space is considered to be indivisible in a model; the number

of dimensions used to describe space, i.e. how many dimensions does the model

operate in; and finally, ABM approaches that are distinctly a-spatial.

3.2.2.1 Fragmentation of Space

Space in ABMs is often implemented in one of two different ways, depending on

the model setup: Discrete Space, and Continuous Space. A comparison through

case study between the two approaches is offered by Castle (2011). In the first case,

space is regularly fragmented, for example as in a grid, where the division unit is



74 CHAPTER 3. COMPUTATIONAL MODELS IN URBAN STUDIES

the default indivisible measuring unit of model space. These approaches borrow

heavily from CA, which often function in orthogonal grid space. In discrete space

models, distances are measured in multiples of the unit, and any spatial functions

are expressed as such, producing fairly rigid spatial relationships between objects.

Agent movement and vision is restricted to specific directions; an orthogonal grid

for example does not allow movement in 30 degree angles, only in the cardinal

directions.

Continuous space models assume space as a continuous property. Distance is ex-

pressed using any metric system similar to any used in real-world conditions. This

allows for distance unit subdivision and ultimately greater detail in spatial inter-

actions. Any point in model space can be referenced, enabling agents to move in

any direction, rotate any amount of degrees, etc. Continuous space models provide

more realistic simulations of real-world spatial scenarios, as they allow for much

more flexible movement spatial interactions in general.

A third approach to spatial implementations exists, which offers an implicit repre-

sentation. Such approaches begin from an abstract representation, in which space

(often with a specific interest on the movement of individuals in space) is repre-

sented as a network of connected locations. In such representations, called graphs,

important locations are conceived of as points, or nodes, and neighbouring impor-

tant locations with valid/existing access between them are linked in the representa-

tion by a line, or edge. Such implementations of space are notably efficient compu-

tationally, and are efficient at representing lattices or similar spatial configurations,

i.e. road networks.

3.2.2.2 Dimensionality of Space

Another spatial aspect found in ABMs is the number of dimensions they define their

space by. There are examples of ABMs of all three types of space (One, Two, and

Three-Dimensional Space), although the vast majority function in Two and Three-

Dimensional Space. Examples of One-Dimensional ABM are found in Wolfram’s
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studies on CA (Wolfram, 1984), where agents exist in linear placement. The spatial

interaction in these models is fairly limited, with space being necessarily divided

in cells, where each agent has exactly two neighbours to interact with, one on each

side. However, when successive states of the simulation are plotted sequentially,

the way that order emerges from these simple rules becomes apparent.

Two-Dimensional (2D) models are the most common, as they allow for easy devel-

opment while still offering a clear description of spatial interactions. Furthermore,

in real-world systems, most of the movement and navigation is done on horizontal

surfaces, with little to no variation in height, so for the simulation of such systems

a 2D representation of space is more than sufficient. In 2D models, system space

is a plane on which the agents move and interact, and can be modelled using either

discrete or continuous space.

Three-Dimensional (3D) models have only been explored in the past few decades or

so (see e.g. Reynolds, 1987), as technological limitations did not allow for the field

to expand (as Reynolds mentions (2006), ”The 1987 implementation was an off-line

batch process, it took roughly one hour to simulate one second of flocking animation

of 80 boids at 30 fps on a then state-of-the-art 1 MHz CPU.”). Height as the third

dimension is addressed in two ways in ABM. One approach incorporates height

as a visualisation method, where a model working in 2D space is rendered in 3D

(eg. with 2D navigation models, where walls are extruded in the 3rd dimension and

agents have height). This allows for much quicker comprehension of model space,

as 3D environments are intuitively easier to understand, as seen in (Pelechano et al.,

2007). In the other approach, agents interact in 3D space and are able to change

height position, for example, as presented in Reynolds’ Boids (Reynolds, 1987),

simulating the formation of flocks in 3D space. In urban and built environments,

3D models have been developed to incorporate important aspects of the third dimen-

sion, such as the effect that falling rubble from earthquakes can have on evacuation

scenarios (Torrens, 2014b), and navigation in complex multi-platform (Lin et al.,

2013) or uneven varied terrain (Pettre et al., 2005).
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A further level of dimensionality, the fourth dimension (4D), is often considered

as the dimension representing time. In this work, time in ABMs is considered as

a different characteristic and will be discussed separately in a following section

(subsection 3.2.4).

3.2.2.3 Aspatial Aspects

In contrast to spatial models, aspatial models are characterized by a complete lack

of spatial relationships and the concept of physical space. Aspatial ABM aim to

model an abstract relationship between agents, eg. in social interactions, or in sim-

ulations of economic activity [citations needed]. In these examples, agents have

means other than distance-based to detect and interact with input, eg. in a social

simulation, agents might be grouped at random at every iteration, as presented by

Wilensky (1997). In aspatial models, basic ABM concepts such as distance and

local neighbourhood, which were easily identified and visualised in spatial models,

still exist, although applied in different manners.

The concept of local neighbourhood regarding individual agents is altered to fit the

model setup as well, as space is not a system attribute. For example, agents might

be ranked according to an attribute such as economic output, and be allowed to

interact only with other agents within a certain value range. Although in aspatial

models, distance as a spatial dimension is not applicable, nevertheless the concept of

distance is still useful. This is more evident in models where agent connections are

organised in a network graph structure, with agents being the nodes (e.g. in models

of social connectivity). In these cases, distance is not space dependent, but rather

represents the abstract distance between two nodes, as measured by intermediate

nodes in the graph, for example. It is evident then that the concept of distance is

still highly applicable, adjusted accordingly to the defining metric of the model.
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3.2.3 Scale in Agent-Based Models

Any system of interest can be broken down into the interactions of its individual

parts, and therefore examined through the ABM approach, given the loose defi-

nition of ABM provided previously. Scale-wise, this means that the agent-based

modelling approach provides a scale-free platform for examining systems of inter-

est. Furthermore, it enables researchers to examine scaling properties of the system

of interest, or how a system looks and operates at different scales (Batty, 2008).

The approach is essentially scaleless; however, specific applications are necessarily

defined by their model scale.

The Model Scale refers to the system of interests size or extent, and can be defined

in two ways: Either by the environment size, or by the agent component size. By de-

scribing a Model by its scale, research focus and design objectives become clearer.

For example, by defining the Environment Scale, a Model may focus on a specific

area/space and investigate primarily user flows. On the other hand, by defining the

agent scale, one is interested mainly in the interaction mechanics between agents,

for example one might be looking into developing accurate simulations of cell inter-

action in biological systems (Holcombe et al., 2012), in which case the Environment

extents are irrelevant.

3.2.3.1 Scale Definitions

By defining one of the two main parts’ scale of an ABM, its design focus becomes

clearer. However, as stated previously, it is the relationship between the two parts

(Environment and Agents) that is the core mechanic of an ABM. For this reason,

in application, it is necessary to clearly define both size attributes, Environment

and Agent Component size. In the following paragraphs, scale and size attributes

specific to each Model part (Environment and Agents) will be discussed.

3.2.3.1.1 Environment Scale The definition of Environment Scale (or System

Scale) in an ABM helps to establish a scale of reference for the whole model. This
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provides the model with maximum and minimum size extents, necessary for de-

ciding elements and phenomena relevant to the system of interest. In models with

a clear spatial scope, the Environment Scale often corresponds to the map size as

well, and defines the borders of the virtual ”world” within which the simulation

runs.

Regarding the necessity for minimum size extents, this is even more evident in

large scale models (e.g. regional scale). Without a minimum scale, a large number

of elements could be seen as components of the system of interest (essentially, any

element observed at a smaller scale, seen as being included ”within” the system’s

limits). However, most of them are orders of magnitude smaller than the Environ-

ment Scale, and their interactions can be better investigated as aggregations into

larger components, within the Environment Scale extents.

3.2.3.1.2 Agent Scale The definition of Agent Scale (or Component Scale) in an

ABM sets the size of the autonomous components in the model, which in turn es-

tablishes the necessary agent attributes relevant to the model focus, and in relation

to the model overall scale. As stated previously, agents in their most basic form

function via ”if-this-then-that” decisions, responding to changes in their local envi-

ronment. For this to function, agents need a definition of what their local environ-

ment is, and a way of sensing it or gathering information about it in the first place.

Both of these requirements are closely related to the agent scale definition. Agent

size also determines agent local neighbourhood size, loosely placed somewhere be-

tween agent size and environment size. This in turn will determine the agent senses,

which is essentially the function to identify and gather information about this local

environment. This sensing function is closely related to the model’s spatial char-

acteristics. In a-spatial models agents will have local neighbourhoods and senses

defined in an a-spatial manner. For example, in a social network model, agents may

have a local neighbourhood defined as the acquaintances up to a number of degrees

away, and thus their senses function would be in the form of ”averaging opinions on

[topic] weighed by node distance”. Accordingly, in spatial models, especially where
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agents represent humans, agent sense functions would start to represent some form

of vision, and local neighbourhoods would be set to correspond to a person’s vision

range depending on application (as discussed for example in subsection 2.2.3).

3.2.3.2 Scale Categories

ABMs can be classified into three categories, in relation to their scale. These three

categories span the whole range of sizes and dimensions observed in the world

around us, and are loosely centered around the human scale as the medium scale.

The three categories can be defined as macro-scale (systems too large to be detected

by direct human perception), meso-scale (systems identifiable through direct human

perception), and micro-scale (systems too small to be detected by direct human

perception).

Some examples to make this classification clearer: Macro-scale models may in-

clude systems at the regional or international scale, as presented by Parker and

Epstein (2011), where the System/Environment Scale can range from national to

global, and the Agent Component may represent different cities or nations. Such

a model may be investigating transport habits or international trade, for example.

Meso-scale refers to systems identifiable at the human scale, and potentially as

large as the urban scale. The environment scale can be identified somewhere be-

tween the neighbourhood and the city (Malleson, 2012, Malleson et al., 2013) and

all examples reviewed in subsection 3.3.1, with the agents representing people or

households. Such a model might be investigating crowd flows or land lot uses in a

neighbourhood. Finally, micro-scale models focus at systems found at the micro-

scopic scale. Environment scale is around the molecular scale or an organism at the

largest, agents represent particles or organism cells, and example models include

the investigation of single cell functions or the growth of tumor cells in organisms,

for example in the work of Holcombe et al. (2012).
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3.2.4 Time in Agent-Based Models

As stated previously, the temporal element is an integral aspect in dynamic models,

such as ABMs. Agents have only local knowledge of their environment, and only

respond to immediate stimuli, meaning they do not act according to a long term

plan. For this reason, simulations advance incrementally, during what is generally

referred to as the update function in a simulation. During its update function, each

agent collects and processes input received only at the current update, acts according

to that input, and then discards all knowledge of the system, until the next update

function, where it repeats the same process. In this manner, the simulation advances

incrementally, until it reaches a predefined point (usually after a certain time, or

when a specific system state has been reached).

There are two ways the passage of time is implemented in ABMs, in much the same

way space is implemented, either in discrete time steps, or as a continuous stream

of events. The first case is more evident in cases where space is also implemented

in a discrete way, for example in CA. In discrete-time models, all agents update

simultaneously during a global update function, which counts as one time-step in

the simulation. The update function is usually split in two stages, the precalculation

stage and the execution stage. In the precalculation stage, each agent gathers all

available information about its local environment, calculates its next step, and stores

it temporarily. Once all agents have finished the precalculations, the execution phase

takes place, where each agent executes the steps calculated previously. This two-

step update method is implemented in order to avoid agents updating before others

have started their calculations, and thus having agents reacting to the wrong data.

Time as a continuous element in ABM attempts to simulate time in a way similar to

that in the real world, where the temporal dimension is continuous. Although time-

steps are still used in this approach as well, they take place at much faster rates,

usually tenths or hundreds in a second, providing a smoother passage of time to

observers of the simulation. This allows agents to update in irregular and/or asyn-

chronous intervals, according to individual conditions, thus allowing for a greater
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degree of agent autonomy. As an example, in a pedestrian model where both space

and time are implemented continuously, an agent might not need to change/update

its bearing until it detects an obstacle in its path, while other agents, navigating

through obstacles at that point, might be executing course correcting algorithms

continuously.

A final note regarding the temporal aspects in ABMs needs to be made, not in

regard to time advancement implementations, but to the way temporal elements

might affect the virtual environment. This can be seen in more extensive models

that simulate real world systems in great detail, where the passage of time affects

environmental parameters in the model. In biological models for example, where

inter-species interaction is investigated, the passage of time in the scale of seasons

may affect environmental parameters such as available resources, or even agent

parameters such as birth/spawn rates or metabolic rates. In urban models, time of

day, week, month, and so forth may be a model parameter changing periodically, its

value directly affecting agent population numbers or agent preferences.

3.2.5 Agent-Based Modelling Frameworks

During the past years of active development, the Agent-Based Modelling approach

has been influenced by many and varied fields, due to its application to the inves-

tigation of systems in as many fields. As such, a large part of researchers using

the ABM approach are not necessarily familiar or well-versed in software devel-

opment practices (Angus and Hassani-Mahmooei, 2015). Furthermore, during all

this time, no single modelling approach has emerged as the single best approach,

and the community is still far from accepting a universal standardized ABM de-

velopment framework (Heath et al., 2009). In addition to the above, there exists a

large number of potential pitfalls one can encounter in the development of an ABM

(Wooldridge and Jennings, 1998), made all the more precarious given some recent

approaches towards more detailed, descriptive models (Edmonds and Moss, 2005),

which makes model verification and validation even harder in a systematic way.
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This large disparity between applied approaches in ABM has been documented by

some researchers (Heath et al., 2009, Angus and Hassani-Mahmooei, 2015), noting

the lack of an agreed-upon protocol. However, some examples of attempts towards

a standardization for ABM development, verification, and validation techniques do

exist. Manley (2013) provides a conceptual framework for the systematic devel-

opment of an ABM. Notably, it is platform-independent, and is presented as a hi-

erarchical series of questions which the modeller(s) should ask themselves during

the initial development (i.e. at the conceptualization stage). The series of questions

begin from a very broad scope, moving gradually into model specifics, and should

be approached strictly in the sequence presented (from general to specific).

The design questions in Manley’s framework are grouped into four sections, listed

here in the order they should be approached. The Observer section refers to all

aspects that sit outside the model itself, such as mission statement, software, audi-

ence, and modeller’s bias. By addressing questions in this section, the modeller has

a grasp of the context within which their model sill sit. The World section refers

to the virtual environment of the ABM in question, and includes aspects of time,

space, interaction with other systems/models, and the rules that apply in this world.

By addressing questions in this section, the modeller establishes a well-defined en-

vironment, and sets the physical laws of the model world. The Interactions section

includes model aspects that define the ways agents interact with one another, i.e.

whether agents can exhibit physical interaction, how (or even if) they communicate,

and whether there exists some form of resource exchange. This section defines the

social rules of the model world. Finally, the Agent section includes questions about

the actual definition of the agent entity, such as agent characteristics and initial val-

ues, their decision making process, and their actions. All of these aspects should

naturally conform to the model world rules, as defined in the two previous sections.

This hierarchical process employs a deductive approach, by requiring the modeller

to answer the broadest questions first, and subsequently flesh out the model based

on previously established rules.
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Another ABM development protocol, which has recently received recognition in

the modelling research community, is the Overview, Design concepts, and Details

(ODD) protocol. Originally presented by Grimm et al. (2006) and further revised

by Grimm et al. (2010), it provides a set of standards regarding the development of

agent-based models and simulations. It requires the modeller to define their model

using a platform-independent model schematic, and should therefore allow others to

reproduce the proposed model in a different environment. The revised 2010 version

will be discussed further here.

The ODD protocol requires the modeller to ’always structure the information about

an IBM in the same sequence’. The proposed sequence consists of 7 elements,

grouped into three main blocks: Overview, Design Concepts, and Details. Overview

includes the ’Purpose’, ’Entities, state variables, and scales’, and ’Process overview

and scheduling’ elements. This block provides a general overview of the proposed

model, what it aims to achieve, and how. By reading only this information, a reader

should be able to implement a version of the proposed model in any Object-Oriented

Programming (OOP) language. It is important to note that at this point, Grimm et al.

specifically ask modellers to refrain from explicitly describing the model in terms

of code, as such aspects should only be considered at the implementation stage. De-

sign Concepts, both an element and block in ODD, describes the general concepts

that are exhibited in the model, such as whether the model addresses emergence,

stochasticity, and how agent interaction occurs. The third block, Details, includes

the ’Initialization’, ’Input data’, and ’Submodels’ elements. It is at this point that the

modeller should discuss model implementation in terms of code used, and provide

ample information for readers to reproduce the baseline simulations. The overall

logic behind the ODD protocol is that model information is provided hierarchically,

from the general to the specific, allowing the reader to constantly build on previous

information.
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3.3 Applicability of ABM in Public Space Use Studies

This section discusses the potential application of ABMs to the study of Public

Space Use (PSU). This potential is identified in state of the art applications of

ABMs in closely related fields, and their capacity to be extended in such a way

as to capture PSU activity. Such closely related applications are identified in the

field of pedestrian modelling, where ABMs are used to simulate the movement of

individuals. A review of ABM pedestrian and crowd simulations will be presented

in the first part of this section, followed by the second part in which a proposal is

presented, outlining how existing pedestrian ABM methodologies can be extended

to capture and simulate human activity in urban public spaces.

3.3.1 Agent-Based Models of Pedestrian Movement

This section will review relevant work specifically in the field of pedestrian ABMs

to identify recent advances and trends. Although the field is still new, a large body of

work already exists, due to its application to and interest from multiple disciplines.

For this reason this review will focus on work published since early 2000, looking at

how the field has evolved in recent years. For comprehensive reviews of pedestrian

ABMs from the perspective of different fields, the reader is directed to existing

work: Pelechano et al. (2008) offer a review of crowd simulations as examined

from a computer graphics perspective, Papadimitriou et al. (2009) offer a traffic-

oriented critical review of the field looking at behavioural modelling assumptions,

while a most recent review of approaches from all relevant fields in the development

of virtual Streetscapes is offered by Torrens (2016).

In recent years, one of the primary aspects of crowd models is the number of di-

mensions used to describe the virtual environment (most often 2D and 3D), as it

may have a direct effect both on implemented methods, as well as model visualisa-

tion. The majority of models reviewed here were found to implement space in two

dimensions (Penn and Turner, 2001, Turner and Penn, 2002, Batty et al., 2003, Hel-

bing et al., 2005, Helbing and Johansson, 2011, Dai et al., 2013, Dias et al., 2014,
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Bandini et al., 2014a, Bandini et al., 2014b, Hartmann and Hasel, 2014, Liu et al.,

2014, Crooks et al., 2015, Leng et al., 2015, Narang et al., 2015, Crociani et al.,

2016, Fang et al., 2016, Song et al., 2016, Pouke et al., 2016). These approaches

offer a top-down plan view of the world, with agents moving on a flat plane. As has

been discussed previously, this simplified representation is often found to be ade-

quate in capturing the movement of individuals in space, as most interaction takes

place on the ground. Furthermore, the reduction to 2 dimensions increases compu-

tational efficiency, and allows for quicker implementation. On the other hand, some

models were found to be developed in 3D, making full use of the third dimension

(Pettre et al., 2005, Haciomeroglu et al., 2008, Sud et al., 2008, Navarro et al., 2011,

Torrens, 2012, Lin et al., 2013, Torrens, 2014a, Torrens, 2014b). These models of-

ten implement high-fidelity shapes, animation, and textures, allowing for a more

realistic view. Furthermore, some spatial configurations might require a 3D model,

as they would be impossible to represent in 2 dimensions (e.g. multi-level buildings

such as stadiums). The inclusion of the 3rd dimension often results in more detailed

models in all regards at the cost of computational efficiency. A third category is

identified as well, placed between the two mentioned here: Some models (espe-

cially models developed around the mid-2000) have implemented a 2.5D approach

to space, with the model functioning on a 2D plane, but visualized using 3D avatars

and walls extruded from the floor, for clearer legibility (Lamarche and Donikian,

2004, Shao and Terzopoulos, 2005, Pelechano and Badler, 2006, Pelechano et al.,

2007, Durupinar et al., 2011, Moussad et al., 2011). These models aim to bridge the

gap between 2D and 3D, by combining benefits of both approaches: more efficient

2D models, with the visual legibility of 3D avatars.

Having discussed the dimensionality of space in ABM implementations, it is inter-

esting to examine how models fragment and codify space as well in terms of dis-

crete and continuous space, as has been discussed earlier (subsubsection 3.2.2.1).

Two main approaches are identified in relevant work: discrete grid space (Penn and

Turner, 2001, Turner and Penn, 2002, Batty et al., 2003, Bandini et al., 2014a, Ban-

dini et al., 2014b, Hartmann and Hasel, 2014, Wagner and Agrawal, 2014, Crooks
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et al., 2015, Leng et al., 2015, Song et al., 2016), and continuous space (Lamarche

and Donikian, 2004, Pettre et al., 2005, Helbing et al., 2005, Pelechano and Badler,

2006, Pelechano et al., 2007, Haciomeroglu et al., 2008, Sud et al., 2008, Moussad

et al., 2011, Torrens, 2012, Lin et al., 2013, Dai et al., 2013, Dias et al., 2014, Liu

et al., 2014, Torrens, 2014a, Torrens, 2014b, Narang et al., 2015, Crociani et al.,

2016, Fang et al., 2016, Pouke et al., 2016). It is interesting to note here that almost

all of the 2.5D and 3D models reviewed here implemented continuous space, while

grid-based approaches were done exclusively in 2D space.

Pedestrian ABMs have been implemented in the simulation of indoor spaces (Penn

and Turner, 2001, Pelechano and Badler, 2006, Castle et al., 2011, Zhou et al.,

2012), often investigating issues of evacuation (Zheng et al., 2009, Wagner and

Agrawal, 2014) and overall navigation in enclosed spaces (Lin et al., 2013), as well

as outdoor/urban spaces (Crooks et al., 2015), investigating safety in large events

(Batty et al., 2003) and urban-wide emergency scenarios (e.g. earthquakes, as seen

in Torrens, 2015). A third category is also identified, in which synthetic pedestrians

move in a continuous featureless plane (Helbing et al., 2005, Torrens, 2012, Helbing

and Johansson, 2011, Dai et al., 2013) rather than a dense environment, which aim

to capture fundamental aspects of pedestrian and crowd movement (Bandini et al.,

2014a, Bandini et al., 2014b, Hartmann and Hasel, 2014).

A variety of pedestrian ABM implementations have been able to reproduce crowd

behaviours frequently observed in actual crowds, such as queuing and counter-flows

(Helbing et al., 2005, Shao and Terzopoulos, 2005, Helbing and Johansson, 2011,

Torrens, 2012, Liu et al., 2014, Leng et al., 2015, Narang et al., 2015, Fang et al.,

2016), thus providing a more realistic microscopic representation of crowd dynam-

ics. Such models often implement a continuous space approach along with complex

perceptual and steering algorithms, with a specific focus on small-scale interaction

between pedestrians.

In simulating individual pedestrian movement, literature suggests that humans im-

plement functions at different levels of cognition, which has been implemented in
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multiple pedestrian models (Pelechano and Badler, 2006, Pelechano et al., 2007,

Yu and Terzopoulos, 2007, Navarro et al., 2011, Torrens, 2012, Torrens, 2014a,

Torrens, 2014b). In these examples, behaviours are differentiated between high and

low level functions, with high level functions including behaviours such as path-

planning, acquisition of information, and communication, while low level functions

include locomotion, obstacle avoidance, and the implementation of vision. High

level behaviours are used to define and control the overall purposes of the agent,

establishing the agent’s strategy, while low level behaviours are used to implement

very specific objectives.

Regarding model dynamics, most approaches were found to implement a mostly

static environment, with agents reacting to other agents. Indeed this is often the

case with models requiring a precalculation of the environment that the agents pop-

ulate and make use of, and is thus too computationally expensive to re-calculate at

each update during the simulation. While such models are good at capturing specific

scenarios, their application to other (even highly related) scenarios requires the en-

vironment to be set up again, i.e. the agents can not respond to dynamic changes in

the environment. Some approaches have aimed at incorporating dynamic changes,

through controlled changes in the environment (Pelechano et al., 2007), fully cog-

nitive and reactive agents (Sud et al., 2008, Torrens, 2014b, Crooks et al., 2015)

which allow agents to respond to any change in their environment such as dynam-

ic/moving obstacles, or by recording environment states in an efficient manner (e.g.

floor fields (Hartmann and Hasel, 2014)). These approaches to dynamic models of-

ten employ a more distinct bottom-up approach, in which more cognitive power is

given to the agents, along with the behaviours necessary to respond to more varied

scenarios. On this topic, it is interesting to note that increasingly models are imple-

menting some form of agent vision (Lamarche and Donikian, 2004, Moussad et al.,

2011, Liu et al., 2014, Torrens, 2014a, Torrens, 2014b, Torrens, 2015, Crooks et al.,

2015), allowing agents to function with increased autonomy.

Regarding the actual movement of individual agents, as discussed earlier, behaviour
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is often categorized into high and low level functions, with high level functions con-

trolling overall path planning, while low level functions control steering and obsta-

cle avoidance. In path planning, the environment itself carries some information

on its continuity allowing agents to identify which locations are connected and thus

traversable, through the use of Visibility Graphs (Penn and Turner, 2001, Turner

and Penn, 2002), navigation meshes (Lamarche and Donikian, 2004), or floor fields

(Hartmann and Hasel, 2014). This layer of information is then used by the agents

to plan their path using a range of algorithms, including Randow Walk Algorithms

(RWs) (Penn and Turner, 2001, Turner and Penn, 2002, Torrens, 2012), Shortest

Path Algorithms (SPAs) such as A* and Dijkstra’s (Batty et al., 2012, Pettre et al.,

2005, Haciomeroglu et al., 2008, Sud et al., 2008, Dai et al., 2013, Crooks et al.,

2015), or a form of hierarchical spatial structure (Lamarche and Donikian, 2004,

Shao and Terzopoulos, 2005). At the lower level of steering, two main approaches

are identified: The Social Forces Model (SF) (Helbing and Molnár, 1995) is found

to be the most used approach in steering and obstacle avoidance with moving ob-

stacles such as other agents (Helbing et al., 2005, Pelechano and Badler, 2006,

Pelechano et al., 2007, Helbing and Johansson, 2011, Dias et al., 2014), as well as

extended versions of it, which include additional elements applying repelling and

attracting forces to the agent (Dai et al., 2013, Bandini et al., 2014a, Bandini et al.,

2014b). The alternative involves the agent actively seeking the optimal path in front

of it taking into account others’ trajectories, through a form of trajectory extrapo-

lation of all agents in the local vicinity (Lamarche and Donikian, 2004, Moussad

et al., 2011, Liu et al., 2014).

It is of note that recent approaches have started enhancing agent fidelity not only by

implementing more efficient routing and steering algorithms, but by also expand-

ing into other fields as well, especially the field of psychology. Some models have

implemented greater degrees of heterogeneity in their agents’ behavioural trees, by

implementing for example leader-follower behaviour (Pelechano and Badler, 2006,

Crociani et al., 2016, Fang et al., 2016), in which some agents are more likely to fol-

low other agents’ lead rather than rely on their own initiative, which has been shown
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to be an effective strategy in evacuation scenarios. In a similar vein, other models

have implemented psychological and personality profiles to their agents (Pelechano

et al., 2007, Durupinar et al., 2011, Narang et al., 2015, Song et al., 2016), investi-

gating how different personalities might behave and affect crowd behaviour.

3.3.2 Extending Agent-Based Pedestrian Models

This section will illustrate how the ABM paradigm can be employed to provide

insights into the study of public space use. The main argument posits that ABM

offer a platform for testing phenomena and behaviours in systems in which the

existence of complex behaviours and dynamics have been identified. Additionally,

ABM work in silico, and as such offer an additional benefit to the study of PSU,

in that they enable experiments to be executed in virtual environments, where the

development and carrying out of experiments in controlled environments would

have been otherwise improbable, or even outright impossible. Activity in Public

Spaces exhibits both of these characteristics, namely it is composed of all the human

actors and their interactions, thus being a system with some degree of complexity,

and conducting controlled experiments on such systems is often infeasible, due to

the number of parameters that might affect a space at any given moment.

Another way to express and describe this combination of ABM and PSU, is by

considering how existing computational approaches of crowd and pedestrian simu-

lations can be enhanced by infusing social interaction rules and stationary activities.

From the technical perspective, a large number of models exist which model pedes-

trian and crowd behaviour in space as the flows of individuals. Furthermore, many

approaches aim to produce realistic scenarios of street and urban space activity,

often termed Streetscapes (Torrens, 2016). This section will discuss how existing

approaches in the development of streetscapes can be enhanced to include stationary

activities and social interaction rules.

As was expressed earlier, the aim here is to illustrate how a crowd simulation can be

enhanced by employing social behaviour and interaction characteristics. By review-
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ing relevant work, the Agent-Based Modelling approach was identified as offering

a suitable platform for developing such simulations, as it has been successfully ap-

plied to a wide range of scenarios highly relevant to the work in this project (as seen

in the review of ABMs of pedestrian movement, section 3.3). Scale-wise, ABM

has been shown to handle systems such as human interaction in public spaces well.

Furthermore, the ABM approach allows for the inclusion of a large number of agent

behavioural decision trees. This allows for the development of what Edmonds and

Moss (2005) call a descriptive model, by incorporating as many verified parameters

as possible in the simulation of a system, in contrast to the reductionist approach

generally observed in modelling.

Given all of the above, at this point an outline of a model can be shaped that com-

bines pedestrian modelling with social interaction. At its core, it functions as a

spatial interaction - pedestrian model, similar to relevant work, such as the models

presented by Torrens (2012), for example. Model Agent Components correspond to

synthetic humans, with a comprehensive set of abilities. More specifically, agents

are equipped with vision functions, relying on their perception of the environment

for input. Also, agents are programmed with motion functionality, allowing them to

move in a realistic manner throughout the environment. Additionally, agents have

a first set of cognitive abilities, necessary for solving problems of a spatial nature,

such as path-finding for calculating a path to their target, and obstacle avoidance

functionality, for navigating the scene at finer scales. This set of behaviours is of-

ten found in pedestrian simulations, and will allow synthetic humans to navigate a

scene with a level of realism beyond other techniques.

In addition to the components mentioned already, agents may hold another set of

components, this time relating to identifying and interacting with other agents in

a social context. Ideas for such components have already been preliminarily for-

mulated, while discussing surveys on crowd behaviour in public. More specifi-

cally, agents may hold different states, for example moving state and standing state.

Agents may be perceived differently, according to which state they are in at the mo-
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ment. For example, when an agent is calculating how crowded an area is, it will

count the number of other agents in that area, excluding all those that are currently

moving, as it has been shown that the act of sitting is recognized as having a much

stronger presence in public. Furthermore, when two agents meet, they may observe

the social distances discussed in Hall’s work on proxemics, according to their as-

sumed relationship. Furthermore, the psychological edge effect has been noted, of

preferring to stand near an edge of feature in a space. This can be incorporated in

an agent behavioural tree, by having agents survey an area, identifying all relevant

features, prioritising them, and choosing to interact with the best option. Finally,

in addition to all the above, agents might have individual crowding thresholds. It

has been shown that people in public spaces will obey and maintain comfortable

crowding conditions. This can be incorporated in models by having agents assess

their crowding conditions in relation to the situation, and acting accordingly (for

example, an agent might have an increased crowding threshold when they are in a

popular limited area such as a festival, but lower their threshold once they are in a

park). By incorporating such rules and others gathered and verified through obser-

vation of public spaces, it seems then possible to enhance pedestrian simulations,

and start transforming them into simulations of urban life.

3.4 Summary of Computational Models in Urban

Studies

Previous chapters established the need for a tool which would allow the testing of

hypotheses and scenarios of human spatial interaction in public spaces, and one

such potential tool was identified in the general field of spatial modelling. This

chapter’s aim was then to explore the relevant literature, in order to first establish

whether spatial modelling is indeed a fitting analytical approach, and secondly to

identify the branches of spatial modelling most appropriate to the simulation of

human spatial activity in urban environments.
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In order to achieve this aim, this chapter presented a review of computational mod-

elling approaches relevant to the aim of this work, starting with a short review of

the evolution and progress in the field of computational spatial models, as identified

within the past 60 years or so. During this time, it was established that researchers

have moved from macro static modelling to micro dynamic models, as interest has

moved to the small scale dynamics of systems. This disaggregate dynamic approach

to modelling was identified as fitting to the aim of this thesis, and as such some of

the most prominent disaggregate modelling approaches (CA, MSMs, and ABMs)

were further discussed.

Among the three Individual-Based Models (IBMs) that were presented, it was de-

cided that the Agent-Based Modelling approach would be the most fitting. This

chapter then provided a review of the ABM approach as discussed in the literature,

covering definitions, how the modelling paradigm handles various aspects of the

modelled system, as well as a review of development guidelines.

Having discussed the ABM paradigm at length, the next section discussed in par-

ticular how ABMs can be implemented to study human spatial interaction in urban

public spaces. To do so, the most closely related field of study which has made ex-

tensive use of ABM was identified, in the field of pedestrian and crowd modelling.

A review of recent advances in ABM pedestrian simulations was first offered, to un-

derstand the breadth of scope of such applications and establish the potential. The

final point was then made, by demonstrating how this potential could be applied

to human social and spatial interaction in public urban spaces, by combining and

extending ABM pedestrian models with rules for social behaviour, as identified in

the previous chapter.

The following chapter in this thesis will discuss Real-Time Data (RTD) and other

opportunities identified within the overall smart cities schemes, and their potential

in offering insights as to how urban residents and visitors make use of the public

urban environment. That will conclude the first part of this work, consisting of the

literature review and the forming of the theoretical groundwork. In Part II, the find-
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ings of this chapter will be further expanded upon under a more technical approach,

discussing how said ABMs can be developed in a programmatic environment.





Chapter 4

On Real-Time Data

This chapter discusses the phenomenon of Real-Time Data (RTD), as it has been

identified in the advances of (urban) information and communications technologies

in recent years. In order to better understand RTD, in the first section (4.1: Defini-

tions and Context), an initial approach discusses the different meanings of the term

real-time, as it has been presented in literature, and identifies the definition that

most closely matches the system of interest here. Following this, RTD is further

discussed within its greater context, which is identified in Smart City schemes evi-

dent in various metropolitan cities around the developed world, and is furthermore

identified as a subset of a larger phenomenon, that of Big Data (BD).

Due to the interlocking and highly related nature of the two terms (RTD and BD),

an attempt is first made to untangle the varied facets of Big Data, and subsequently

re-identify RTD within the deconstructed definition of BD. As such, the second

section (4.2: On Urban Big Data) begins with a discussion on various aspects of

big data that are of interest in urban analysis. Aspects discussed include the volume,

resolution (both spatial and temporal), as well as matters of data capturing and

accessibility. Having untangled and presented BD through its different aspects, the

next part discusses some of the critical points towards BD, its ubiquitousness, and

its apparent scope of application.

The third section (4.3: Reframing Real-Time Data within the Context of Urban Big



96 CHAPTER 4. ON REAL-TIME DATA

Data) presents RTD through the scope of individual aspects of BD. It first identifies

the BD elements which constitute a dataset as real-time. Following that, it discusses

recent innovations regarding RTD datasets, through applications aiming at making

sense of the data, as identified in many City Dashboard applications. Finally, the

section concludes by discussing applications of RTD in models of urban systems,

thus moving from Real-Time Analytics and Visualisations into Real-Time Models.

Following that, the next and final section (4.4: Real-Time Data in the Study of Pub-

lic Space Use) takes the concept of Real-Time Models a step further in the context

of this work, by considering the applications of RTD to the study of Public Space

Use (PSU). As a first step, relevant datasets are identified, and their potential ap-

plication is discussed within the scope of urban human activity. Next, connections

are highlighted between relevant RTD, and modelling approaches as have been pre-

sented in the previous two chapters. With this, a summary of all findings in these

first three chapters is offered, along with their connections, and the tone is set for

the next part of the thesis, which will offer a discussion on the technical aspects

regarding developing Real-Time Agent-Based Models of Public Space Activity.

4.1 Definitions and Context

The discussion on RTD opens with an attempt at a definition, beginning by exam-

ining the appearance and usage of the term ’real-time’ in literature. Following this,

by elaborating on the various aspects of the term, and identifying the relationships

between them, a working definition of the term ’real-time’ in the scope of this work

is offered. Next, RTD is placed within its broader context, identified in relevant

literature as the concept of the Smart City. This concept is discussed in more detail,

first to establish the context within which RTD comes into focus, and second to

identify additional and related approaches to understanding RTD.
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4.1.1 References in the Literature

First a discussion and categorization of the different meanings of RTD is offered,

followed by the definition of RTD used in this thesis. A reading of apparent rel-

evant literature paints a somewhat blurred picture regarding the definition of the

term ’Real-Time’, as the term is applied to different (albeit related) concepts and

practices. More specifically, three different meanings of the term ’Real-Time’ are

identified in the literature: Real-Time in terms of temporal fidelity, where data ex-

ists at a high temporal resolution, Real-Time in terms of publication time, where

a dataset becomes available at (or almost at) the point in time it is captured, and

therefore it refers to an ongoing event, and Real-Time in terms of computational

fidelity and efficiency, where a computer simulation is able to produce output that is

at a high temporal resolution, and/or execute at fairly fast update intervals, i.e. with

no detectable delays between updates. These three meanings are discussed in more

detail in the following sections.

4.1.1.1 Real-Time Resolution

RTD in terms of temporal resolution (RT-res), where data is captured at a very high

frequency. In this case, data is being captured and stored at very small intervals.

In urban studies, this interval is found to be less than an hour, and often less than

that, in 15 of 5 minute intervals, and can range down to capturing the exact second

or even millisecond of each individual data point. Phenomena captured by this

approach can be re-viewed at a later time on a point-by-point basis, replaying the

phenomenon ’as it unfolded’, or in other words, in real time, rather than offering an

aggregated summary of the dataset (e.g. daily summaries). This meaning of Real-

Time data can be better understood if considered in contrast to aggregated datasets,

for example quarterly reviews of economic activity (not real-time), against daily

(or even hourly) records of transactions of a shop/business (real-time in resolution,

since they provide a highly detailed record of activity). Such datasets can be used

to analyze a phenomenon or system at very high fidelity, and enable researchers to
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identify its micro-dynamics, but do not allow the output of the analysis to have an

effect on the phenomenon/event itself, since the event took place in the past, and

has potentially already ended.

Examples of this type of real-time are mainly found in earlier studies due to tech-

nical limitations regarding streaming datasets, since recent advances enable the

publication of data as it is being captured, thus turning it into RT-pub (subsub-

section 4.1.1.2). Specific examples might include recorded video footage (Bandini

et al., 2014b), site surveys (e.g. recording pedestrian flow over time, Gehl Archi-

tects, 2004) that are published/analyzed after the survey has ended, archived times-

tamped datasets, as collected e.g. from social media (Becker et al., 2011), as well

as brain studies, analyzing detailed readings of emotions acquired through mobile

electroencephalography technology (Aspinall et al., 2013).

4.1.1.2 Real-Time Publication

RTD in terms of publication time (RT-pub), where data is published at (or close

to) the moment of capture. In this case, data capturing and publishing methods

have been streamlined at such a degree that a dataset is being made available in a

streaming fashion, offering a view of a phenomenon as it is unfolding in the real-

world. This type of RTD is by definition also captured in a high temporal resolution.

The analysis of these datasets is of particular interest here, as when combined with

RT-comp (next item) systems, allows output to be produced quickly enough to po-

tentially have an effect on the phenomenon of interest.

Examples include monitoring systems for critical infrastructure (e.g. in engineering,

SCADA), transportation control systems, communications systems, weather and

environmental sensors, as well as social media and Web 2.0 (and later) technologies

(Roozemond, 2001, Shamir and Salomons, 2008, Zuccato et al., 2008, Barth, 2009,

Calabrese, 2009, Lee et al., 2009, Sevtsuk, 2009, Batty et al., 2010, Sakaki et al.,

2010, Shi and Liu, 2010, Becker et al., 2011, Calabrese et al., 2011, Kouvelas et al.,

2011, Min and Wynter, 2011, Stefanidis et al., 2011, Tao et al., 2012, Kitchin, 2013,
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Tallevi-Diotallevi et al., 2013, Kitchin et al., 2015).

4.1.1.3 Real-Time Computing

RTD in terms of modelling fidelity and computational speed (RT-comp). This case

does not relate directly to observations of the world and their captured temporal

fidelity, but rather to the analysis of high-fidelity datasets. Instances where high

temporal resolution data is being analyzed often require the analytical methodolo-

gies to maintain a similar temporal fidelity and demonstrate it in their output. In

such cases, the analysis can be said to run in real-time. Furthermore, depending on

analytical approach and processing power, the methodologies implemented might

impose a heavy computational load, potentially making the analysis run at speeds

slower than real time (i.e. in order to calculate one minute of simulated time, the

computation might require more than a real-world minute). However, some cases

may require the analysis to not only maintain a similar temporal fidelity, but to also

honour the timestep, so that a unit of time in computation corresponds to the same

unit of time on observations (e.g. a simulation where one second in the real-world

corresponds to one second in the simulated world, or less). This reference to real-

time is most often encountered in the field of computer science, where efficiency is a

key aspect (Roozemond, 2001, Dia, 2002, Aly, 2008, Pollefeys et al., 2008, Shamir

and Salomons, 2008, Barth, 2009, Geiger et al., 2011, Min and Wynter, 2011).

A good example here can be seen in traffic modelling: Consider the problem of

calculating all vehicle trips in a given street network, for a given duration (say an

hour). A trip distribution algorithm can calculate all trips using a computationally

efficient approach, and provide statistics for every trip, as well as for each point

in the network. However, this approach does not acknowledge dynamics within

the model, for example interactions between vehicles, or the effect of accidents

and delays, and therefore the computational simulation can not respond to real-

time conditions. On the other hand, an Individual-Based Model (IBM) can simulate

every individual vehicle in the area of interest, and have them navigate to their
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destinations, based on the optimal path as calculated at each point in the simulation.

This approach can potentially take longer to calculate, but it enables the simulated

entities to respond to real-time1 conditions.

4.1.1.4 Working Definition of Real-Time

The three instances discussed above are found in literature and are all described

through the term ’Real-Time’, although they refer to different (albeit related) con-

cepts. They are not mutually exclusive, and in fact the different facets of RTD are

often strongly related (eg. RT-pub are by definition RT-res, while RT-comp often

incorporate RT-pub and/or RT-res datasets as input and output).

This thesis focusses on data published at the moment of capture, as it is the interest

of this thesis to investigate the possibilities of developing simulations that capture

urban activity at present. Under this approach, RT-pub will be considered as the

dominant aspect of RTD, with the other two aspects viewed as derivatives. More

specifically, RT-res is a direct derivative, since data captured in real-time retains the

temporal fidelity any time it is re-used, and RT-comp is considered as the applied

part of RT-pub, concerned with solving the technical issues of working with RT-pub.

Therefore, when the term real-time is used in the rest of this work, it will refer to

real-time data in terms of publication.

The term ’Real-Time’ has so far been discussed mainly in isolation, as it has ap-

peared in the literature. The next section will define and discuss the broader context

within which RTD has been established, as the term has been defined in this work.

4.1.2 The Broader Context: Big Data and Smart Cities

Having defined Real-Time Data (RTD) in terms of meaning and applicability, the

next step is to discuss the context within which RTD is most encountered. It is

mainly in recent years that the term RTD has gained in popularity, around the turn

1In this latter example, real-time refers to each entity’s current time in the simulation, rather than
the current time in the real-world.
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of the 21st century (Graham, 1997, Townsend, 2000). This rise came about due to

advances in information technology coupled with networked mobile devices, which

in turn allowed people to be constantly connected to each other. This change pro-

vided a new alternative, in which people could send and receive information any-

where and anytime, or in other words, in real-time. It is interesting to note that

initial predictions theorized that it would be mobile phones that would bring about

the realization of the Real-Time City (Townsend, 2000). Although this particular

technology played a huge part, it was the rise of Web 2.0 technologies, and the

subsequent access to such technologies through mobile networked devices (smart-

phones), that ultimately enabled the Real-Time City.

Furthermore, in addition to making the exchange of information easier, it was the

further evolution of these approaches into machine-readable information that gave

an even larger rise to the real-time concept of a city. This evolution allowed auto-

mated devices to become part of the information exchange, and thus widely broad-

ened the spectrum of potential real-time datasets. This constant exchange of all

kinds of information between people, devices, and combinations thereof, and the

subsequent archival of these interactions, is what ultimately led to the rise of what

is today termed Big Data (BD) (Kitchin, 2014, Townsend, 2013). In recent years,

cities have been attempting to harness this non-stop stream of Big Data, in order

to improve many of their aspects. These approaches, where urban governance and

management relies on the rapid analysis of information, have been referred to using

many related terms. As Kitchin (2013) describes:

Cities which have embraced information and communication technolo-

gies [...] have been variously labelled as wired cities (Dutton et al.,

1987), cyber cities (Graham and Marvin, 1999), digital cities (Ishida

and Isbister, 2000), intelligent cities (Komninos, 2013), smart cities

(Hollands, 2008) or sentient cities (Shepard, 2011). Whilst each of

these terms is used in a particular way to conceptualise the relationship

between ICT and contemporary urbanism, they share a focus on the ef-
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fects of information and communication technologies on urban form,

processes and modes of living, and in recent years have been largely

subsumed within the label smart cities, a term which has gained trac-

tion in business and government, as well as academia.

According to Ratti and Claudel (2016), the top-down approaches to urban gover-

nance of the past decades are deemed insufficient for the development of the cities

of tomorrow. These approaches are unable to encompass, accommodate, or even

comprehend the diverse needs and wants of the billions of individual citizens of the

present and future. What is needed rather is a bottom-up approach, where input

and participation from informed citizens is taken into consideration in the planning

process, as ”There can be no smart city without smart citizens” (Ratti and Claudel,

2016, p. 148). Furthermore, citizens can empower themselves through data, both

for personal betterment (e.g. for smart homes, cars, etc.) as well as in civic partici-

pation (through open data, transparency, etc.). This point is made clearer further by

Foth et al. (2016) and Hudson-Smith (2014), who frame the discussion around the

triptych of smart cities, citizens, and social capital, with the latter being the driving

force behind meaningful change in the smart city. Therefore, it is this bi-directional

stream of Big Data usage between city and citizen that will enable the cities of to-

morrow: from many small-scale sources large datasets are generated, which allow

us collectively to understand how cities work, but also inversely, from the vastness

of urban datasets, individuals can make use of specific datasets and information

highly relevant to them.

For Townsend (2013), the concept of a ’smart city’ has not been properly defined

yet, and it is still malleable, since for him the question should not be ”What is a

smart city?” but rather ”what do you want a smart city to be?” (2013, p. 15).

However, at its core, he identifies the interplay between three distinct phenomena:

First, rapid urbanization, and the acknowledgement of the fact that in the following

decades, the majority of the global population will be living in urban environments,

with any problems and opportunities this might present. Second, networked people,
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and the capability for the instantaneous exchange of information between individual

citizens. And third, networked infrastructure (also termed Internet of Things), re-

ferring to the huge number (having far surpassed the number of humans connected

to the web) of automated devices connected to the world wide web, and the capac-

ity for unsupervised (by humans) exchange of information in real-time. Townsend

identifies the second and third as the tools of this particular era, the proper applica-

tion of which will potentially help solve the problems of future cities as caused by

the first phenomenon, and subsequently play a large part in shaping the future smart

cities.

Given the above then, it is evident how RTD is a vital component of the smart city

of tomorrow, as identified through the larger application and use of urban Big Data.

Therefore, in the following section, RTD will be discussed through the examination

of its broader context, identified as that of Big Data (BD).

4.2 On Urban Big Data

This section aims to identify and discuss aspects of RTD that are of importance to

this work. However, due to the interrelated nature of RTD, Big Data, and smart

cities, as discussed in the previous section, it is often hard to distinguish between

the three in relevant literature. Therefore, and since RTD has been identified as a

subset of Big Data, in this section Big Data will be discussed holistically, in order

to identify aspects and properties that apply to RTD, but are often encountered in

the literature as applicable to Big Data in general.

More specifically, an attempt will be made to identify different properties of Big

Data, both as have been identified and established in literature, and also through a

deconstruction and examination of properties deemed relevant to this work. Fur-

thermore, points of criticism on Big Data and smart cities will also be discussed, to

highlight potential problems, and help understand proper applications of RTD.
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4.2.1 Properties and Aspects

There have been identified three main characteristics of Big Data, (as described in

Kitchin, 2014, Kitchin and McArdle, 2016), also described as the 3Vs of Big Data:

volume, velocity and variety.

Volume: On the size of Big Data, both in terms of data size (GB and larger), as well

as in terms of coverage, aiming to cover all of the system of interest, rather than

sampling (number of data points n = all).

Velocity: The real-time nature of Big Data is acknowledged as one of its defining

characteristics. However, what is usually mainly established is the stream of in-

formation, rather than what or when the information refers to. Although Big Data

generally refers to ’now’ there are multiple cases where data arriving in a streaming

fashion refers to past events. This is discussed in more detail in Section 4.2.1.1.

Variety: Relates to the different data types, the structure (or absence of) of datasets,

and links between them.

In addition to the 3 Vs, this work will discuss additional aspects of Big Data, in

order to better understand its nature and how it relates to the world today. More

specifically, it will explore the coverage that BD offers, in terms of spatial as well

as temporal coverage (what it covers), its sources and how it is produced (where it

comes from), and the different ways BD is offered (how it is accessed). Each of

these aspects will be discussed as a spectrum of possible states, as they have been

identified through their use.

4.2.1.1 Temporality

Regarding the temporal aspects of BD, two characteristics are considered as the

defining ones in this work. First, Big Data is often in high temporal resolution, eg

data points represent very fine durations. In urban terms this fine resolution can be in

hours, minutes, or less, but greatly depends on application (see following paragraph
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on temporal units of BD). The second defining characteristic of BD regarding its

temporal aspects is its streaming nature: New data is always being generated and

published, and there is no downtime regarding data collection.

However, in addition to the two aforementioned characteristics, another temporal

aspect of BD is worth discussing within this context: That of the difference between

data publication time relative to time of capture, with the two extreme possibilities

termed Real-Time Data, and Historic Data. This dichotomy closely follows from

the discussion in the previous section, on RT-pub and RT-res definitions of RTD. In

this context, Real-Time Data is published immediately after capturing. Essentially

data about an event is made accessible concurrently to the event taking place, or

as close to that time as possible (near Real-Time). On the other hand, Historic

Data refers to data being made available after the event has taken place and been

recorded. In this context, historic can refer to anything that is not ”now”, and is

highly dependent on circumstances. As a rough working definition: Historic data

is data which highlights an event that has passed, and the data cannot be used by

interested parties in order to act and affect the event.

Another way of illustrating this dichotomy between Real-Time and Historic Data

would be by discussing the differences in temporal units between capture and pub-

lication of the data. As a general rule of thumb, the shorter the duration between

capture and publication, the more a dataset can be considered to fall towards the

Real-Time definition (and inversely, the longer the duration, the more probable for

a dataset to be considered Historic). However, this proves to be an inefficient ap-

proach when considering actual units of time, as the differences between Real-Time

and Historic data regarding their delay of publication time is entirely based on con-

text and application: For example, in urban traffic monitoring and urban movement

in general, hour-old data can be considered as historic, as the urban movement cy-

cles/phases work in much smaller durations, eg. the morning rush hour might last

an hour at most, therefore hour-old data reflects an event that has already passed. In

a policy context however, day-old or even week-old data can be considered Real-
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Time, when compared for example to the time-scale of one of the most reliable

datasets, the national census. For example, in (Zuccato et al., 2008), waste-water

monitoring can be used to derive indicators of drug abuse, monitored daily, there-

fore the effectiveness of a new policy on drug use can be studied as it is applied and

is adopted by the public.

4.2.1.2 Spatiality

Given the spatial nature of this work, it is of importance to discuss the spatial aspects

of Big Datasets. As a starting point, within the wide range of datasets classified as

’Big’, it is understandable that a subsection might not include any spatial infor-

mation. Indeed, specific BD sets are often by their nature a-spatial: For example,

genetic information datasets do not relate to a specific place by their very nature.

However, when considering Urban Big Data specifically (as is the focus of this

work), the existence of spatial properties is of great importance, as it offers a broad

spectrum of additional information, and furthermore adds to the relationality of the

dataset, through its potential to be considered, intersected, and analyzed along with

additional datasets via their spatial attributes. Spatial aspects in BD can be seen to

vary a lot, both in terms of resolution, as well as accuracy and extraction of spatial

information. A short discussion on applications of spatial Big Data capturing and

analysis in multiple instances is presented by Gray et al. (2015).

When focussing specifically on the spatial nature of datasets, a wide range of spatial

information is identified. First of all, datasets may differ in their spatial attributes

regarding the resolution at which the data is published, from fine to coarse. On

the one end of the spectrum, in any spatial dataset a datapoint can exhibit very fine

spatial information in the form of geolocated coordinates often captured via the use

of a GPS-enabled device, and can therefore pinpoint the exact location of the event

that was captured. On the other end, datapoints may be aggregated to a coarser

aerial unit, ranging from a small neighbourhood, to coarser units such as a city or

country.
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In addition to resolution, data can vary depending on the method that is used to ex-

tract the spatial information and its subsequent accuracy. More specifically, datasets

may often explicitly include the spatial information, in the form of geolocated co-

ordinates, as discussed previously. Furthermore, in instances where the data has

originated from an immobile source, such as an installed sensor, the location is also

known to be fixed in space, and can be amended if an error is detected, therefore it

can be considered to be of very high accuracy. Other often-encountered instances

of explicitly geolocated datasets include data originating from GPS-enabled mobile

devices, such as navigation devices and smartphones, which allow for capturing the

location of an event moving in space. The accuracy depends on the quality of the

GPS sensor, with high-quality commercial sensors being able to capture an event

with an accuracy of 5-10 meters or less. In addition to explicit spatial information,

it is often possible to infer spatial aspects of a dataset even when no geolocation

information has been recorded, by parsing the content or metadata of the dataset.

This is often especially true when the dataset contains information in the form of

written words, which can be analyzed for contextual information, thus extracting

spatial information from it, for example by scanning for place names. However,

these approaches are very sensitive to noise, and may therefore suffer from high

inaccuracy.

4.2.1.3 Sourcing

In addition to examining the spatiotemporal content of big datasets, another valid

approach to understanding BD is in the examination of its sources. By identify-

ing where it comes from, and how it is being generated, we can better understand

the nature of information that is communicated through BD, and how it may apply

to cities and urban systems. Kitchin (2013) identifies 3 main source types of BD:

Directed capturing, Automated generation, and Volunteered information, also iden-

tified by Ratti and Claudel (2016, p. 54) as ad hoc sensor deployment, opportunistic

sensing, and crowdsensing, respectively.
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Directed capturing of data refers to data generated through direct observation,

meaning that a conscious effort has been made to observe and capture a particular

data point. In this approach, an entity of interest (for example a person, a location,

or an attribute) is the target of active focus in some manner, via which data is being

collected regarding any relevant events. This approach follows from data collec-

tion approaches of earlier years in almost all sciences, where the collection of any

dataset required some active involvement from the collector, by surveying, running

controlled experiments, or focussing a sensor on a particular entity, e.g. a CCTV

camera monitoring an entry way. In cases of directed capturing, some (if not all) re-

quired aspects are known beforehand, potentially allowing for more fine-tuned data

collection.

Automated generation of data has mainly emerged in recent years, as a side charac-

teristic of increased automation in urban systems. In this approach, the generation

of data is an inherent and automatic function of a device or system, and can often

be the by-product of a different process altogether. More specifically, with elec-

tronic devices and systems, it is often the case that a process will keep a record of

its function, input, and result, along with other metadata, such as date, time, loca-

tion, etc., which primarily is of importance to the overseer, to make sure that the

automated system is performing as desired. However, with a large enough volume

of functions and processes taking place, the volume of side data being generated

from such processes potentially becomes such that it can offer valuable information

on a significant sample. A prime example of such cases is the automated electronic

ticketing system in effect in many large cities (eg. TfL’s Oyster Cards in London,

UK), which keeps track of individual passenger entries and exits in the transporta-

tion network, therefore providing a highly detailed image of the movements of a

large portion of a city.

Third, volunteered information as a source of BD refers to information provided by

users of a service or general members of the public. In this case, people provide

information on a specific topic or service. One subcategory of this source of BD
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includes active participation from users, as seen for example in crowdsourced map-

ping platforms (e.g. openstreetmap.org), where individual users map areas they are

familiar with, potentially generating highly detailed maps of the world. This ap-

proach has also been termed as Volunteered Geospatial Information (VGI) (Good-

child, 2007), when discussing spatial applications specifically. Another subcategory

of volunteered information is seen in the use of the internet as a communication

platform, where users publish information through micro-blogging and networking

platforms (eg Twitter, Instagram, Facebook), often appending a large amount of

metadata, along with the content of the communication itself. This approach has

been dubbed Ambient Geospatial Information (AGI) (Stefanidis et al., 2011), in

relation to the metadata attached to the messages themselves.

4.2.1.4 Accessibility

In this section, matters relating to data ownership and access to datasets are dis-

cussed. The degree of accessibility of various big datasets can be seen to exist in

a spectrum, ranging from open and free data which is available to any member of

the public, to closed/protected datasets, which restrict access to everyone but a very

limited number of specific individuals/organizations. More specifically, four broad

categories are identified, presented here in decreasing degree of accessibility: Open

Data, Publicly Available Data, Proprietary Data, and Closed Data. A similar classi-

fication is presented by the Open Data Institute, in their data lexicon (Broad, 2015),

noting the existence of 3 types of data: Open Data, Shared Data, and Closed Data.

Open data refer to datasets that are available to any member of the public, free of

charge, without restrictions on use. This approach to data ownership and accessi-

bility has started becoming more widespread recently, as seen in local and national

open data portals, offering access to a wide range of urban datasets. Some ap-

proaches still retain ownership of the dataset, but make it available under an Open

Data Licence. For an extended discussion on Open data within the broader BD con-

text, the reader is referred to the work of Kitchin (2014). Publicly available data
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refers to datasets that are generally available to members of the public, often free of

charge, but are potentially limited to their use due to a restricted licence. The Open

Data Institute refers to similar datasets as ”Public Access Shared Data”, describ-

ing it as ”data that is available to anyone under terms and conditions that are not

’open’”. Proprietary data refers to datasets that are under a restrictive licence, and

access is not allowed by default. Access to such datasets might often require a fee,

and/or meeting certain criteria. Finally, closed data refers to datasets that are ”pro-

tected” from the public, i.e. data that should not be shared with anyone. Examples

of such datasets might include security-sensitive information, business-sensitive, or

more importantly, personal information.

4.2.2 Criticism on Urban Big Data and Smart Cities

This section discusses criticisms of Real-Time Data and Smart Cities schemes in

general, as identified in recent literature. The main points include the quality of Big

Data, ethics on the collection and use of Big Data, issues with derivatives of Big

Data, and finally a suggestion on how to approach it.

First of all, regarding the quality of Big Data: It has been suggested that the advent

of data-rich sources would result in the end of scientific theory due to its redun-

dancy (Anderson, 2008), as more data would highlight more connections and help

optimize on this information alone, therefore making the formulation of models and

predictions obsolete. While this may indeed be true sometime in the future (if and

when data manages to present us with all the information), and while Big Data an-

alytics are indeed supporting a large number of functions nowadays, the underlying

issues present in all datasets are not adequately addressed. First of all, Big Data

is not necessarily more objective data. Even though stream-lined processes allow

us to capture a larger portion of the population, and thus increase the sample size

significantly, this merely leads to a proportional increase in bias in data captured

and data used, as the number of decisions on discarding, manipulating, and clean-

ing up data increases as well, especially when considering the number of devices
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transmitting and receiving data unsupervised (e.g. automated systems, the Internet

of Things). Therefore, it has been noted that Big Data contains a large potential for

data bias (boyd and Crawford, 2012, Kitchin, 2014). Furthermore, the mere scaling

up of volume of data causes an increase in data error and noise as well (McArdle

and Kitchin, 2015, Kitchin, 2014), if no additional actions are taken to ensure data

quality. Even in such cases however, where quality standards are ensured, the rapid

nature of RTD requires that data points are published as soon as possible. Therefore,

this results in data being published which may not have been verified by publishing

organisations at first at the time of publication, or in other words, RTD and BD may

inherently introduce more error and noise.

Second, Big Data has raised key issues regarding the ethics on its use, as exemplified

by recent articles and investigations on whether social media user data, sourced by

third parties, was used to analyze, target, and ultimately influence voter behaviour in

significant ballots2. Starting with the capturing of the data itself: data often comes

from user-generated content shared through different platforms and contexts such

as social media, i.e. not explicitly research contexts. While the volume and meta-

data of such interactions has immense value for scholars when used for research

purposes, the user is not necessarily aware of this potential use, and therefore may

not have provided explicit consent for their data to be used in such a way. Even

in cases where data is public (for example when a user chooses to ”publish” their

content), the potential levels of public-ness that a user’s content is subject to might

not be fully clear to them. As boyd & Crawford state (2012), ”Just because [Big

Data] is accessible does not make it ethical”, and therefore researchers working

with Big Data, especially user generated data, should be aware of the implications

of their work on the data source, and address all issues regarding the ethics of us-

ing a particular dataset. Furthermore, it has been theorised that current practices

involving Big Data are contributing to widening inequality. While the potential of

2Namely the UK EU Referendum, 2016 and the US Presidential Elections, 2016.
Sources (Accessed: 2018/04/29): https://www.theguardian.com/news/2018/
mar/17/cambridge-analytica-facebook-influence-us-election,
https://www.nytimes.com/2018/03/17/us/politics/
cambridge-analytica-trump-campaign.html

https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.theguardian.com/news/2018/mar/17/cambridge-analytica-facebook-influence-us-election
https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-campaign.html
https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-campaign.html
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using Big Data may be of great value to all users and recipients of its output, access

to such data and tools is not necessarily open to all, either due to cost or technical

knowledge. It is important then to acknowledge that while the pursuit for new data

rich sources, tools, and methodologies can in theory be beneficial to society in gen-

eral, not everyone has the means to extract this value, and in fact such pursuit may

be widening existing inequalities, as well as creating new digital divides (boyd and

Crawford, 2012, Townsend, 2013, p. 12).

Given the potential issues of Big Data discussed here, it is important to identify

derivative issues as well, which may arise through secondary applications of Big

Data. Hollands (2008) discusses the validity of the term ”smart city” altogether,

when considered as the result of applying Big Data analytic tools to cities. Consid-

ering the significant investment and capital that is required to support the change to

more efficient and self-reliant city systems, cities may be tempted to adopt the term

”smart city” as a label and marketing tool, rather than an attempt for genuinely pro-

gressive applications of Big Data and information and communications technology.

Furthermore, as noted by Townsend 2013 such cities may be increasingly reliant on

software to perform optimized urban functions, and given the ”buggy, brittle, and

hackable” (Kitchin, 2013) nature of software, this may cause cities to ”malfunc-

tion” as well. Therefore, it is vital for researchers to hold a critical stance on cities

and regions promoting a smart city agenda at first glance, to ensure that Big Data

issues on ethics and quality are indeed addressed in a systematic manner.

Framing the use of BD and RTD in consideration of the points here, it is understood

then that BD poses an advantage and a risk: On the one hand, its existence along

with the tools to handle it has provided us with a much larger window through

which to view the world, and therefore provides an additional proxy for systems

and phenomena, unavailable until now. On the other hand however, this window

still only accounts for a part of the world, rather than the whole. Given the above,

it has been suggested (Mayer-Schönberger and Cukier, 2013) that in order to make

use of Big Data, the quality acceptance threshold may need to be set lower, to ”good
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enough”, as due to its size it inherently presents additional error and noise.

4.3 Reframing Real-Time Data within the Context of

Urban Big Data

After having discussed individual aspects of BD, RTD will be identified within this

context as a subset of BD, by constraining some aspects.

4.3.1 Relevant Properties: Temporality and Accessibility

The most relevant properties of BD regarding RTD are discussed here in more detail.

Mainly, temporality is the main characteristic of RTD, and more specifically the

minimal difference between publication time and time of collection, in other words,

RTD applies to data which, at the time of first publication, refers to an event that

is currently taking place. Additionally, accessibility (and subsequently, reliability)

is an important factor, since applications that rely on RTD must have guaranteed

access to the dataset as soon as it becomes available.

4.3.2 Real-Time Data Analytics: Urban Dashboards

In order to better illustrate the applications of RTD it would be helpful to briefly

discuss some examples where urban RTD has been put to use. One of the most

prominent uses of RTD can be seen in visualisation and analytics applications of

urban datasets, often described under the term Urban Dashboards. City Dashboards

aim to bring together many varied datasets regarding urban systems in one view,

offering a real-time overview of key urban performance indicators, allowing for

quick dissemination and easier consumption by a larger audience. Furthermore,

they enable people to acquire an overview of multiple urban aspects as provided

through RTD, without requiring the need for specialized knowledge of computer

science and data capturing methods on the viewer/user side.



114 CHAPTER 4. ON REAL-TIME DATA

Some of the earliest examples of Urban Dashboards emerged in North America,

with one of the initial applications being ’CitiStat’, developed for the city of Bal-

timore in 1999 (Perez and Rushing, 2007), which constituted an attempt at using

metrics to identify problematic areas within urban management. It was afterwards

opened to the public, by launching a website that provided citizens with city opera-

tional statistics. Similar approaches soon emerged in other large metropolitan areas

in the U.S.A. (Kitchin, 2013, Mattern, 2015).

One such example is the London CityDashboard3, developed by the Centre for Ad-

vanced Spatial Analysis (CASA) at UCL (Gray et al., 2016), which launched in

2012. It visualizes various real-time city metrics, by collecting data from various

open data platforms through the use of their Application Programming Interfaces

(APIs). It presents real-time information regarding weather, air pollution, traffic

and underground service status, as well as feeds from social media pertaining to

London, and the service has been extended to include other large metropolitan ar-

eas in the UK. Another example of Urban Dashboards is the Dublin Dashboard4,

an analytical dashboard developed by The Programmable City Project at Maynooth

University (Kitchin et al., 2015), launched in 2014. It provides information, includ-

ing both real-time and time series (historic) data, about multiple aspects of the city

of Dublin.

A more integrated approach to Urban Dashboards is that developed for the city

of Rio de Janeiro, Brazil, at the Centro de Operacoes Prefeitura Do Rio5. It was

launched in 2010, bringing together data from multiple city agencies, including

traffic, emergency services, utilities, weather, as well as broader public information,

into a single urban analytics centre. Its aim was to provide more efficient real-time

management of the city, by making it easier to combine and analyze critical urban

information (Singer, 2012).

3http://citydashboard.org/london/
4http://www.dublindashboard.ie/
5http://cor.rio/
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4.3.3 Beyond Real-Time Analysis: Real-Time Modelling

Having discussed widespread applications of RTD analysis, the possibilities of ex-

tending the use of RTD are discussed here, through their incorporation into models.

The main reasoning here is as follows: First, the existence of a constant stream

of new data covering many varied topics, termed RTD, is considered as a given

in the current state of affairs. Second, the capturing, manipulation, analysis, and

meaningful dissemination of such real-time datasets has been established, as seen

in applications of City Dashboards. Third and final, a next step in this pipeline of

urban RTD is their use as input to urban models. This can therefore result in a model

of an urban aspect that will be running concurrently to the urban aspect itself, and

will be constantly providing some form of output relevant to the urban aspect.

Once workflows have been established regarding acquisition, manipulating, and vi-

sualising RTD (which constitutes a big bulk of the technical aspects of working with

RTD), the question of whether it is possible then to use these datasets in models be-

comes viable. More specifically, it has been demonstrated in earlier sections of this

chapter that current computing power and methodologies are well equipped to han-

dle models and simulations that execute at a ’real-time’ (or even faster) timestep.

Furthermore, such models and computational methodologies are capable of han-

dling large volumes of data as input, and of producing similar volumes as output,

while at the same time maintaining a high temporal resolution. Therefore, it is hy-

pothesized here that such models and approaches would be able to be receiving as

input a stream of RTD, with no significant problem, executing a simulation, and pro-

viding an output of some form, in a duration short enough to still be considered as

’Real-Time’. To better illustrate this concept of Real-Time Modelling, the follow-

ing section will discuss how RTD can be incorporated into models and simulations

of activity in public spaces.
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4.4 Real-Time Data in the Study of Public Space Use

Having defined RTD and discussed its varying aspects within the context of urban-

ism, this section will elaborate on the potential that RTD has brought to the field

of PSU studies. As was shown previously in this work (chapter 2), the study of

activity in public spaces often relies on highly detailed records of user activity with

minimal noise, both regarding temporal fidelity (i.e. hourly and minute counts), as

well as captured activity (i.e. actions performed by users of space, including move-

ment, avoidance, interaction, etc). Gathering such high quality data therefore incurs

a significant cost, as data is either captured through direct observation (Appleyard

and Lintell, 1972, Whyte, 1980, Gehl Architects, 2004) and thus requires extensive

preparation and long work hours, or is performed through automated systems, such

as sensors (e.g. the SmartStreetSensor project6) which requires the installation of

infrastructure. Furthermore, data often covers a very specific time period, outside

of which no data is available. Given all of the above, current practices in the study

of public space activity make use of small data, as noted by Kitchin (2014, p. 46):

[t]heir [small data] production ... allows researchers to effectively mine

narrow, tailored seams of high-quality data in order to make sense of

the world.

On the other end of the data size spectrum, RTD addresses the issue of temporal

coverage by its very nature, as it is constantly being generated. Additionally, it can

somewhat mitigate the high cost of capturing small data, especially when consid-

ering ambient and volunteered information, as data is either offered by interested

parties, or is included in the meta-data of the message itself. However, as has been

discussed, this unsupervised approach to data creation often results in more noise

being introduced, and therefore Big Data (and by extension RTD) can be seen as

offering a different compromise between data availability and quality (more data at

lower quality/more noise), which has been argued (Mayer-Schönberger and Cukier,

2013) may be a valid alternative.

6https://www.cdrc.ac.uk/news-archive/18073/
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This work aims to examine whether this alternative offered by RTD is indeed valid

in the study of public space use. By considering RTD as a proxy for a phenomenon

(Mayer-Schönberger and Cukier, 2013), it becomes possible to gather data on pub-

lic space activity collected passively, and subsequently interrogate the dataset to

provide an indicator of activity, even where no ground truth data has been collected.

Therefore, by additionally capturing information through ”small data” approaches

(i.e. direct observation), this RTD approach to PSU studies is considered as com-

plementary and an extension to traditional approaches.

4.4.1 Relevant Real-Time Datasets

Having discussed how RTD can be used in the study of PSU, this section will focus

on potential real-time datasets that can be of particular interest in this study. For the

time being, datasets will be identified and discussed only in broad strokes and in

general terms, as at this point the main focus is still to build the theoretical frame-

work of this work. Actual datasets that are tested and either used or discarded in

this work are presented in later chapters (see Chapters 6, 8, and 9), along with

the methodologies used to capture each, and a discussion around the applicabil-

ity of each. Furthermore, as a clarification, the one common characteristic of all

datasets discussed here is their real-time nature, both in terms of being published

in a streaming (continuous) fashion, as well as referring to an event that is taking

place concurrently to the dataset being published.

The most important area of interest here is human activity in public spaces. Al-

though this parameter widely broadens the spectrum for viable datasets, any datasets

that relate to human activity on the ground are potentially of interest here. As such,

first and foremost, any datasets containing information on peoples’ activity in public

space can be considered relevant. This might include volunteered data from users

of public space themselves, as seen for example in geolocated social media activity

originating from public spaces. Additionally, data originating from directed collec-

tion sources can be valid, from monitoring the place itself, such as CCTV footage
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and sensors, to automated datasets, such as connectivity records for wireless devices

in a space. These datasets, among others, can offer direct information on the num-

ber of people currently in a space. In addition to datasets relating to direct human

activity in a space, other real-time datasets can be used to infer information on hu-

man activity. For example, public transport passenger data can provide information

on people arriving at or leaving from an area, which might be of interest in a larger

urban context, or in cases where an area is well serviced by public transport, and

is fairly isolated (meaning that a large percentage of visitors and users make use of

public transport, and therefore some information on activity can be inferred from

such datasets). All such examples mentioned here can potentially be used to inform

and/or validate a study which focusses on public space activity.

In addition to datasets that directly or indirectly relate to human activity, there are

other real-time datasets that might contain information on characteristics and pa-

rameters that might affect expected human activity in public spaces, and as such

should be considered as well. Given the predominantly outdoor nature of public

spaces, weather conditions probably play a large part in current activity in a pub-

lic space. Therefore, weather and climate information should be considered, when

studying public space activity. In addition to weather conditions, a parameter that

might affect public space activity is the existence of any cultural events of impor-

tance taking place, and so scheduled events might be of interest as well, as can be

captured from cultural guides or social media. Such datasets as discussed here can

hold information on conditions that affect activity in public spaces, and therefore

are of interest to this work.

4.4.2 Implementing Real-Time Models of Public Space Activity

This section brings into focus the arguments from this chapter along with the find-

ings of the previous two chapters (Chapter 2: Understanding Public Space Use, and

Chapter 3: Computational Models in Urban Studies). More specifically, the dis-

cussion here focusses on the introduction of RTD datasets into Agent-Based Models
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(ABMs) of PSU, completing the conceptual framework around the development of

Real-Time Agent-Based Models of Public Space Activity.

In the previous two chapters, the capabilities of ABMs were presented regarding

their application to the development of models and simulations of public space ac-

tivity. More specifically, it was illustrated how existing ABM approaches and ap-

plications for pedestrian modelling can be extended to capture Streetscape activity

(Torrens, 2016), by incorporating behavioural rules and rules of social interaction,

as identified in PSU studies. Therefore, at that point, it was established that such

models can in principle be developed, and can function at a high fidelity, both tem-

porally and spatially. However, their applicability to real-world cases had not been

established yet.

In this chapter, a wide range of datasets was identified, which contain information

on public space activity, and are furthermore available in real-time, and therefore at

a very high temporal fidelity. Given then the computational capabilities of models

as discussed previously, it is posited that such datasets as discussed here can be

used to inform models of public space use. This combination then allows for the

general concept models as discussed previously to be applied to specific areas of

the urban realm, and as long as there are datasets pertaining to activity in said areas,

for these models to turn into simulations of specific spaces. Furthermore, given the

ability of such simulations to run very fast computationally, and of the real-time

nature of the datasets discussed here, it is also possible for the said simulations to

run concurrently with activities in the space they are simulating, allowing for real-

time computational analysis of the space. Finally, given the fact that some datasets

discussed previously may also refer to future events and conditions (e.g. weather

forecasting, planned events), it is also potentially possible for such simulations to

run in a predictive fashion, by continuously simulating a state ahead of current time,

and therefore continuously providing predictions of near-future activity.

The findings and arguments presented in the past three chapters form the theoret-

ical framework for this work. They presented and discussed findings in relevant



120 CHAPTER 4. ON REAL-TIME DATA

literature, and illustrated how the three different fields discussed here (Public Space

Use (PSU), Agent-Based Models (ABMs), and Real-Time Data (RTD)) should be

combined to produce Real-Time Agent-Based Models of Public Space Activity. In

the next part of this thesis (Chapters 5, 6, and 7), the technical aspects of this ap-

proach will be discussed in detail, to illustrate how such simulations can begin to

take shape and apply to real-world scenarios.
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Chapter 5

Real-Time Simulation Methodologies

This chapter discusses the overall real-time model of public space activity. It will

provide a broad description of the model as a whole, highlighting its different com-

ponents, their interaction, and interdependence, in order to illustrate overall work-

flow. In its abstract form, the real-time model presented here is considered as two

processes in series: An aggregate activity prediction model, and a spatial disaggre-

gation model, with output from the first process being used as input to the second.

The chapter begins with a conceptual description of the overall model in Section

5.1, first by discussing the temporal characteristics of the model. Next the different

sub-model parts (aggregate-predictive and disaggregation) are discussed together as

components in the overall model, along with a discussion of the way validation is

incorporated.

The following section (Section 5.2) discusses the process of overall activity estima-

tion in more detail. It presents the two predictive models that were considered in

this work. Following this, in Section 5.3 the spatial disaggregation process is dis-

cussed. This takes the form of an Agent-Based Model (ABM), calibrated to capture

and simulate public space user activity.

In the second to last section (Section 5.4) overall model implementation is dis-

cussed, covering the development platform, model visualisation and dissemination,
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and output. The chapter concludes with a short summary, connecting findings pre-

sented in this chapter with the following chapters, highlighting the areas this work

will expand on.

5.1 Model Outline

The overall aim of this work is to examine whether state of the art Real-Time Data

Feeds and modelling frameworks can support the development of a Real-Time Sim-

ulation of Public Space Activity. An underlying model will be developed to support

such a simulation, with the goal to continuously predict activities and their locations

in a space, disaggregated to the individual level. More specifically, a Real-Time Sim-

ulation of Public Space Activity in the context of this work is defined as a model that

can:

1. Accurately predict the volume of human activity in a public urban space at

high temporal fidelity.

2. Accurately predict the types of activities taking place in a public urban space

and the locations of said activities.

3. Perform the aforementioned predictions of activity concurrently with it hap-

pening, i.e. in Real-Time.

Spatially, in theory, such a model can be applied to the entire continuous extent of

urban public space. However, in the scope of this work, public space will be exam-

ined in fragments through case studies, by defining specific public spaces and their

borders, and examining them as autonomous entities, cut off from their surrounding

areas.

Some initial definitions are required, concerning the overall real-time nature of the

model. As discussed in previous chapters, real-time is defined as data published in

a streaming fashion, and relating to an event or activity that is currently ongoing. In

the context of this work, the temporal unit for this duration (or lag) is assumed to
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be adequately measured in a minutes-scale, i.e. a dataset can be considered as real-

time (and thus relevant) when it is referring to an event that happened up to several

minutes ago1. Broadly, within the context of this work, the quarter-hour mark will

be used as the maximum threshold, i.e. a data point may be considered as real-time

if it was captured up to 15 minutes ago.

There exists an inherent limitation under this consideration: Due to the collec-

tion methodologies used, the extent of accessibility to datasets, and the collection

methodologies employed by services offering the Real-Time Data (RTD), it is ev-

ident that any data collected relates to an event in the near-past. If a simulation

model is built around the exclusive use of such datasets, it will always be reflecting

events that have already happened, i.e. collecting data for the last half-hour allows

us to have a clear picture of events up to the current point in time. Considering the

time needed for the simulation itself to run (non-trivial, and depending on compu-

tational load, might be measured in minutes) it becomes evident that a simulation

that starts ’now’ and runs based on datasets that include everything from ’half an

hour ago’ until ’now’ is always representing aspects that fall in the past.

This work takes a different approach, one so that the overall model aims to be sim-

ulating public space activity closer to real-time. The overall model is split into

different sub-models, each pertaining to a different aspect as will be discussed later

in this chapter, with sub-models often working in series, i.e. one sub-model feeds

into another. This process itself requires some significant amount of time to be run.

Therefore, in order for the overall model to be running in real-time, the overall pro-

cess is tied to real-world time, with some sub-models relating to the near past, and

some to the near future aspects of the space. Parts relating to the near future predict

values and parameters relating to the activity of interest, whereas parts relating to

the near past collect actual data of the activity that took place (Figure 5.1). This

splitting and placing of functions in the future and in the past allows the model (the

middle temporal point of the overall model, if you will) to be running in tandem

1A measurement in the hours-scale would be too coarse for the needs of this work, while a
measurement at the seconds-scale would most often result in not data points per observation
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with the real-world.

Figure 5.1: Real-Time Model Timeline: Overall model M updates at regular intervals u. At
timestep t, the Forecast sub-model F predicts the total activity for the following
period (from t to t+u), while the Validation sub-model V collects data on actual
activity for previous period (from t−u to t), and compares against the previous
forecast of Ft−u.

The model of Real-Time Activity in Public Spaces that is presented here consists

of two main parts which work in series, and a third auxiliary validation step. For a

given point in simulation time, output from the first part feeds into the second part

as input. The first part consists of a forecast model for the estimation of overall/ag-

gregate activity in the area of interest, under normal conditions. The second part

consists of an agent-based spatial disaggregation model of individual activity.

The first part requires input from multiple real-time sources, all considered as inde-

pendent variables within the context of this model. It generates output in the form

of total activity (a single value for the total current activity in the area of interest).

The second part requires input in the form of total current activity as a single value,

which it uses to control the agent population size in the simulation, currently and in

the near-future. It generates output in the form of individual locations and activities,

and density estimations.

The two-step process detailed above provides an estimate of current activity in a

space. In addition to these two steps, a third semi-independent step is required

for model validation. It acts as a check for both the predictive model, as well as

the spatial disaggregation model, providing a feedback loop to recalibrate model

parameters. It uses real-time data to check current conditions in the area of interest.
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Regarding the predictive model, it reads actual near-real-time data from relevant

sources, to validate the output of the predictive model (Figure 5.2). Regarding the

spatial disaggregation model, data pertaining to the locations of individuals within

the space is required, potentially using sampling methods, and is used to validate

the spatial distribution of activities.

Figure 5.2: Sub-Model Flowchart

The overall model then consists of three distinct parts. It is imperative to discuss

the relationships in the model, between the sub-models themselves, but also more

importantly between the model and the real-world itself. Two time lines will be con-

sidered here: TA, referring to actual real-world time, and T S, referring to simulated

time, as used by the model (Figure 5.3).

Figure 5.3: Parallel Timelines: Actual and Simulated Time

The first point at which TA and T S coincide is at the start of the predictive model.

At time i, the predictive model estimates near-future overall activity for the period

between T Si to T Si+1. This value is then fed into the agent-based spatial disaggre-

gation model, which runs the simulation for the duration T Si to T Si+1. Note that
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no additional real-time data is being collected during the simulation time. Further-

more, the simulation can be run at a faster time that real-time, so that the simulation

arrives at T Si+1 before TAi+1 occurs, it is imperative however that it runs at least

in real-time (in computational terms). Also, the data generated during this whole

process is all synthetic and predicted data. When actual time TAi+1 arrives, the val-

idation sub-model collects all relevant data from RTD sources for the time period

TAi to TAi+1. This data is then compared to the data generated from the model

for the corresponding period, T Si to T Si+1. Any difference between simulated and

actual data is recorded. Following this, the model loop starts again, with the pre-

dictive model estimating near-future overall activity for the period between T Si+1

to T Si+2, taking into account any difference between simulated and actual activity

in the previous period, and incorporating that difference as a correction to the new

estimation. The new estimate is then fed into the agent-based spatial disaggregation

model (Figure 5.4).

Figure 5.4: Sub-model Flowchart in Continuous Time

It is by using this balance between near-future prediction and near-past collection

of RTD, that the model aims to be performing in real-time. It is evident from the

description of the model that it is not a ’true’ real-time model: it aims to be al-

ways predicting the near-future, and once that near-future becomes near-past, to be

validating its previous prediction and incorporating it into the next prediction. A

’true’ real-time model would require data to be streamed directly into it, from all

sources, reliably to the timestep, however if this were achievable for the scope of

urban data this model considers, then a real-time model might not be needed at all,
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as all information would already be present, and only its analysis would be required.

5.2 Forecast Sub-model

Two different approaches were considered for the predictive model of aggregate

activity. In both cases, focus is placed on the activity within the area of interest

as the output variable. In both approaches, the aim is to accurately calculate the

total aggregated number of people in the space, irrespective of individual visitor

characteristics and activities.

5.2.1 Visitor Supply Approach

The first approach considers the area of interest as a receptor of visitor activity.

Given that the area of interest is considered as autonomous, this first approach re-

volves around the idea of capturing the total number of potential visitors arriving in

the general area (i.e. just before they potentially engage with the actual space itself).

It may draw data from sources such as transport and passenger records, estimating

the number of visitors arriving at specific stations, etc. This output is then fed into

the spatial disaggregation model (the second part of the real-time public space ac-

tivity model), where individuals are generated as autonomous agents, and decide on

whether they visit the space or diffuse to other local destinations, outside the area of

interest, and thus removed from the simulation. This alternative then considers the

overall activity model through a supply-oriented approach: It essentially supplies

the area of interest with potential visitors, who then decide whether to engage in an

activity in the public space of interest at a later time. In itself, it does not calculate

total simulated activity in the area of interest, but rather it provides a value for new

potential activity, as it estimates the total number of potential new visitors, with the

estimation of activity in the area of interest taking place at a later step (Figure 5.5).

In contrast to the next forecasting approach (5.2.2), this model is of a spatial nature,

as it takes into account distances of entry points to the area of interest.
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Figure 5.5: Visitor Supply Schematic: For the area of interest (bold dashed line), a buffer
zone is created around it (light dashed line), capturing all public transport points
in the zone, considered as entry points to the area. A subset of new person
arrivals is passed into the area of interest as visitors, and part of the simulation.

The formulation of the model is as follows: The buffer zone around the area of

interest captures a set of all potential entry points S, identified as transport network

nodes (e.g. bus stops, underground rail stations, etc). For station s in S, at time

period t, total passenger exits are Es
t . Of this total, only a subset is assumed to be

directed towards the area of interest, and thus considered visitors. This area visitor

volume, denoted V s
t , is assumed to be affected by distance ds to the area of interest,

so that

V s
t =

Es
t

ds

Therefore, for time t, the total of new visitors Nt from all stations S to the area of

interest is defined as

Nt = a∗∑
s∈S

V s
t

with a denoting any additional modifiers. It is important to note that this approach

estimates new visitors at each update. Therefore, for time period t, total visitor
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population Pt in the area of interest is affected by total population at t−1:

Pt = Nt +b∗Pt−1

where b is a decay factor for the population total at the previous timestep, with a

value range2 0 < b < 1. A detailed discussion on the actual estimation is offered at

Section 6.4: Transport Data, including data sources, methodologies, and results of

calculating passenger exits at individual stations at a fine temporal scale.

5.2.2 Total Visitor Volume Approach

The second approach takes the opposite path, by considering overall activity

through a demand-oriented concept. In this approach, the predictive model aims

to accurately capture the overall number of individuals that are already engaged in

activity within the space. In this case, the area is treated as an autonomous, cut-

off space even more so, as anything that takes place outside the strict borders of the

space is completely disregarded. Potential datasets for this approach rely on sources

that directly relate to the number of individuals in the area: embedded sensors in-

stalled in the area, as well as volunteered visitor data. These datasets inform the

model on current activity in the space, and the predictive model aims to accurately

predict the total number of visitors that should be in the space at any given point

in time. This output value is then fed as input to the second part of the model, the

spatial disaggregation model, which converts it into individual autonomous agents,

places them in specific locations, and allows them to engage in simulated activi-

ties (Figure 5.6). In contrast to the previous Visitor Supply Approach, this model

is completely aspatial in nature, as it calculates total aggregate activity based on

environmental and temporal parameters.

This model is formulated as follows: Given the nature of the spaces of interest in

this work (public, open spaces hosting ephemeral activities), sets of relevant param-

2For b = 0 the model assumes the population refreshes completely between timesteps; for b = 1
the model assumes that visitors never leave the area of interest
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Figure 5.6: Total Visitor Volume: Overall visitor number is estimated as a result of other
independent variables, such as time of day, weather, etc. This number is as-
sumed to be the actual visitor volume that will be in the park for the following
period.

eters and variables are identified, which are assumed to have an effect on public

space activity. These are broadly identified in temporal (e.g. time-of-day, day-of-

week) parameters T , weather and climate parameters W , as well as any particular

attractions for a given space at a given time, At . Therefore, for a given time period

t, total visitor population in the area of interest Pt is assumed to be directly affected

by the aforementioned parameter sets, so that

Pt = Tt ∗Wt ∗ p+At + e

where p is a population coefficient, and e is a constant. It is important to note

that this approach calculates total visitor volume in the area of interest right now,

regardless of when visitors arrived at the area. Therefore, in this case, and in direct

contrast to the previous approach, it is the estimation of new visitors at the current

time period that requires the consideration of populations at previous timesteps, so
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that

Nt = Pt−b∗Pt−1

A thorough discussion on the datasets, methodologies, analysis, and results on this

visitor volume estimation approach is presented in Section 6.1: Online Data - Real-

Time Data.

5.2.3 Estimation Approaches Summary

The first approach (Visitor Supply) was deemed to be too open-ended, requiring

potentially multiple independent datasets as input, as it considered total activity as

dependent on conditions in the general area. Although this approach is certainly

considered as a more accurate/realistic representation given the continuity of ur-

ban space, it was found to be inefficient in terms of implementation, calibration,

and validation, as is discussed in Section 6.4.2.3: Disaggregation to minute counts

at station. The second approach (Visitor Volume) is fairly more constrained, as it

considers total activity in the area of interest as an independent entity/variable. It

assumes a hard-boundaries approach, where the area of interest is cut off from all

external influence, and internal activity is considered as an independent, self-reliant

element. The Visitor Supply approach was therefore considered as unfitting within

the scope of this work. For the remainder of this work, the Total Visitor Volume

estimation approach will be used, and all references to Aggregate Estimation Mod-

els/Predictions will henceforth refer to the Total Visitor Volume approach.

5.3 Spatial Disaggregation Sub-model

This section discusses the Spatial Disaggregation Model (SDM), which acts as the

second step in the overall model. This part of the model is in principle unrelated

to any notion of real-time. Its main function is to receive an independent number

variable as input, and convert it to spatial activity in the area.
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5.3.1 Basic Principles

Three main objectives are identified as vital regarding the real-time simulation of

user activity in public spaces, and will be discussed in this section. Two are con-

cerned with the activities themselves, while the third relates to the temporal con-

tinuity of the SDM, within the larger context of real-time modelling. Specifically,

the activity-related objectives focus on the types of activities taking place in public

spaces, and the interactive nature of the activities. The temporal continuity aspect

is concerned with the temporal nature of the SDM, when coupled with a real-time

forecasting model of public space use. This section will first discuss each of these

three model requirements in more detail. Following that, it will identify the Agent-

Based Model (ABM) paradigm as a suitable platform for the implementation of the

SDM.

5.3.1.1 Relevant Spatial Activity

As a primary requirement, the Spatial Disaggregation Model (SDM) should ac-

curately capture and reproduce individual human activity as identified through its

spatial footprint. In other words, the principal objective of this sub-model is to place

virtual individuals in the area of interest, with a high degree of accuracy in terms

of location. In order to achieve this, the different types of activities that take place

in public spaces need to be identified, along with the spatial footprints and char-

acteristics different activities might exhibit, and altogether be incorporated in the

SDM.

As discussed in earlier chapters (Section 2.2: Studying Human Behaviour in Public

Spaces), there is a wide range of human activities observed to take place in urban

public spaces. These individual activities have been broadly classified into two cat-

egories, moving activities and stationary activities. Therefore, as a broad principal

objective, the SDM will aim to capture the movement of individuals through public

space, as well as any stationary activities public space users engage in. Such aspects

of human spatial activity are expected to be affected by spatial configuration, and
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therefore it is expected that the physical environment itself will play a large part in

capturing and driving simulated user activity. As such, as a secondary aspect, an

accurate representation of the area(s) of interest is needed as well.

5.3.1.2 Visitor Interaction

In addition to the effect the physical environment can have on human spatial activity,

there is another aspect that might have a similar (if not greater) effect on individual

activity, which is the influence other public space users might have on an individual.

Although it has been implicitly discussed, a clearer picture needs to be presented

here, regarding human interaction in public spaces. It is generally accepted that

humans in social situations do not function completely independently, but rather

acknowledge one another, and it has been further suggested that this interaction

(even at the passive level of acknowledgement) is one of the defining aspects of

urban life (Jacobs, 1961, Larco, 2003).

There are numerous instances in relevant literature where (social) interaction is seen

as an important factor in human behaviour, both in empirical/observational studies,

as well as in computational/theoretical studies of human behaviour. Furthermore,

this effect of interaction seems to be applicable to both moving and stationary activ-

ities. More specifically, observational studies on pedestrian movement seem to in-

dicate a correlation between group size and movement speed (Gärling and Gärling,

1988, Costa, 2010), while from a theoretical point of view, a prominent pedestrian

dynamics model incorporates interaction as a core element (Social Forces Model

(SF), in Helbing and Molnár, 1995). On the other hand, stationary and seating ac-

tivities in public spaces have been observed to correlate with the existence of other

users in the space (Whyte, 1980; 1988, Gehl, 1987). It is therefore important for

the SDM to include public space visitor interaction as a core element, rather than

assume isolated behavioural heuristics, as it is expected to have a great effect on

overall activity.
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5.3.1.3 Model Persistence

As stated previously, the disaggregation model in itself is disconnected from any

real-world temporal parameters, i.e. it does not relate to real-time conditions. How-

ever, its integration with a real-time forecast model raises some questions regarding

the potential effect of continuous time on the disaggregation model itself. More

specifically, the issue of disaggregation model continuity arises, due to the com-

bination of multiple elements in the overall real-time public space activity model

working at different temporal scales/updates. These elements are the update fre-

quency of the forecast model (defined here as approximately 10-15 minutes), public

space user activity duration (majority is significantly more than 10-15 min), and the

potential interaction between different users of public space.

What is proposed here is a requirement for the disaggregation model to exhibit

persistence. Persistence is broadly defined as the continued existence of the disag-

gregation model and its parts/components, for a significant duration of time. This

requirement will be demonstrated by considering a discontinuous implementation

of a disaggregation model, and illustrating the shortcomings of this approach when

applied to simulations of real-time public space activity.

The main function of a basic spatial disaggregation model is to convert an aggre-

gated (single) value into multiple elements/entities, dispersed in space, exhibiting

some degree of spatial autocorrelation. Such a model may be coupled with an aggre-

gate forecast model (as discussed e.g. in 5.2.2), executing/calculating a new spatial

distribution every time a new scheduled prediction is provided, i.e. is discontinu-

ous. Such a model may indeed be valid for the purposes of this work, if certain

conditions hold true: First, the disaggregated entities’ temporal relevance must be

smaller than the forecast model update, so that spatial distribution of activity has

completely refreshed between predictions. This would allow the disaggregation

model to calculate a new spatial distribution at every update, given that all entities

would be considered as ’new’ in the space. Second, entities must have no effect on

each other, or in other words, entities must operate under ’blind’ autonomous rules,
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disregarding any other entities in the space.

On the second condition (entity interaction): when considering public spaces and

user activity, it has been observed that human decision making is affected by oth-

ers’ actions, especially when considering activities in public space (Jacobs, 1961,

Whyte, 1980; 1988, Gehl, 1987). Therefore, the second condition cannot be con-

sidered to hold true regarding human activity in public spaces. The first condition

(entities’ temporal relevance) partly depends on model parameters: If the predic-

tive model is scheduled to run at a large enough timestep, it can be assumed that

between two timesteps, all entities will be different. Regarding activity in public

spaces, some minimum values can be considered (Ipsos Mori, 2015a): In parks,

typical visit duration is between 30 minutes and 2-3 hours, with average visit du-

rations approximately 80-90 minutes. As has been discussed previously (Section

5.1, Chapter 4), within this work, the threshold for RTD is placed at the 15 minute

mark and sooner. Therefore, the forecast model can be considered to update at least

every 30 minutes, and therefore disaggregated entities certainly persist over multi-

ple forecast sub-model updates (Figure 5.7). Under these considerations, the spatial

disaggregation model requires a continuous implementation, so that entities persist

over time.

Figure 5.7: Visitor Timeline within the Model Timeline

5.3.2 Applicability of the Agent-Based Modelling Paradigm

In summarizing the previous section, three aspects have been identified to be of

primary importance regarding the SDM, and need to be addressed in the implemen-
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tation. These are the accurate representation of public space user activities further

identified as moving and stationary activities, interactions between different user-

s/visitors of public space, and a persistent/continuous implementation of the SDM.

Considering these as the requirements for the development of the sub-model, this

section will discuss the ABM paradigm as a framework suitable for the implemen-

tation of the model.

Starting with the first requirement, that of capturing user activities: Human move-

ment activity in public space at this scale is encompassed almost in its entirety

in pedestrian movement. Numerous examples in literature have been discussed at

length elsewhere in this work (Section 3.3.1: Agent-Based Models of Pedestrian

Movement), in which the specific problem of human pedestrian and crowd move-

ment has been studied using the ABM paradigm, and the paradigm has been found

to be suitable for the task. Regarding stationary activities, according to Bonabeau

(2002) ABMs provide the following two benefits: They are most natural in describ-

ing a system composed of ’behavioural’ entities, and they are flexible. Consider-

ing these two benefits in conjunction with the existing body of work on modelling

pedestrian movement, it is argued here that stationary activities as realized through

human behaviour constitute a system composed of behavioural entities, and thus the

ABM paradigm is suitable for modelling such a system, and furthermore they can

be implemented as an extension of existing pedestrian movement ABMs, due to the

paradigm’s flexibility.

Considering the second requirement, that of user interaction in a disaggregated

model: Given that such a model focusses at the micro-scale, it is assumed that

an Individual-Based Model (IBM) would offer a suitable approach for develop-

ment. Furthermore, considering the continuous nature of the spaces of interest, the

heterogeneity of activities, and the focus on entity interaction, the applicability of

other IBMs such as Cellular Automata (CA) and Microsimulation Models (MSMs)

is questionable, as CA function on a fairly rigid spatial configuration and generally

do not differentiate between environment and entity, while MSMs focus more on
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individual entity behaviour in isolation, rather than in interaction with other enti-

ties. Therefore, ABMs seem to offer the most suitable framework for developing a

Spatial Disaggregation Model (SDM) of Public Space Use (PSU).

Regarding the requirement for model persistence: ABMs can be compared to the

Object-Oriented Programming (OOP) paradigm often found in modern program-

ming languages, and indeed similarities between the two frameworks have been

highlighted (Crooks et al., 2018). In OOP, methods and procedures are considered

as standalone objects, that can manipulate their own properties, and interact with

other objects. They exist within the overall scope of the program until they are de-

stroyed, or the program is terminated, and until that point are able to interact with

other objects within the program scope (Kay, 1993). In a similar fashion, in ABM,

agents can exhibit persistence over a long period of time, and are able to interact

with other agents in the simulation, as long as they are within scope. Therefore, a

persistent ABM can be implemented in such a way, so that the simulation runs for

an extended period of time, and agents are introduced, remain within the simula-

tion, and can interact with all other agent entities, regardless of when other agents

were introduced3.

Given the arguments presented here then, the SDM will be developed using the

ABM paradigm. A detailed description of the public space activity model will be

presented at length in Chapter 7: Modelling Spatial Behaviour, where the proposed

ABM of PSU is presented using the Overview, Design concepts, and Details (ODD)

protocol (Grimm et al., 2010).

5.4 Model Implementation

In the previous section it was established that the overall model would be developed

using the ABM paradigm. This section will discuss specific development platforms,

and will identify the most appropriate environment for the implementation of the

3or ’generated’, following the general concept of ’generations’ in ABM
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ABM. For the platform selection process, three requirements have been identified

which the development platform should fulfill. First, it should be capable of sup-

porting the development of an ABM. In broad terms, this narrows the selection

to any platform that is explicitly designed for ABM and can therefore potentially

support the development of the model in this thesis, or a platform that supports a

(preferably widely used) programming language that implements a main event loop

in order to implement the dynamic model (or both, an environment for ABM de-

velopment that has a programming interface). Given the specific characteristics and

novelty of the proposed model in this thesis, it was decided that the best option

would be to develop the model from the beginning using a programming language.

Second, the chosen programming language should support Object-Oriented Pro-

gramming (OOP), as the similarities between ABM and OOP have been discussed

previously, and the selected environment should take advantage of this. Third, it

was decided that the ABM of PSU would be developed in a three-dimensional en-

vironment, and therefore the chosen platform should be capable of supporting a 3D

ABM, as well as provide a convenient environment to edit the 3D geometries. The

reason for this decision is as follows: At the architectural/human scale, perception

of the environment relies on the third dimension (height), and spatial activity ob-

served at this scale is influenced by elements that are inherently three-dimensional4.

Therefore, a model that aims to simulate user activity at this scale within feature-

rich environments should take into account the third dimension, and therefore a 3D

ABM would be necessary.

Given the requirements discussed above, two main platform categories were iden-

tified. The first category is dedicated Agent-Based Simulation Platforms, environ-

ments built specifically for the development of ABMs, with the added requirement

of being capable of supporting 3D models. A review of ABM platforms (Rails-

back et al., 2006, Crooks et al., 2018) identified four widely used platforms: NetL-

4Including for example walls and building facades that define open public space, as well as
features within public spaces, such as stairs, bridges, underpasses, elevations platforms, ledges, etc.
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ogo5, SWARM6, MASON7, and Repast8, and furthermore the JAVA programming

language was identified as the language most commonly used in ABM platforms

(Nikolai and Madey, 2009). Based on comments from the reviews mentioned here,

Repast was chosen as the best candidate from all dedicated ABM platforms.

The second category is 3D modelling environments that support a programming lan-

guage with a main event loop. The characteristics of this second category are found

in modern Game Development Platforms, which are tools dedicated to the develop-

ment of computer games, and thus support 3D geometry (for developing game visu-

als) and event loop-based programming languages (for implementing game logic).

The three most widely used platforms were identified to be Unity3D9, Unreal En-

gine10, and GameMaker Studio 211. Of the three, GameMaker is oriented towards

2D games and was discarded as a potential option. Unreal Engine supports pro-

gramming using C++ as well as ’Blueprints’, a node-based visual scripting inter-

face, while Unity supports the C# programming language and the extended .NET

Framework. Of the two, it was decided that Unity would be the best candidate, due

to its level of maturity compared to Unreal Engine.

Comparing the two options based on the original criteria, both Repast and Unity

are found capable of developing an ABM, although Repast is a dedicated ABM

platform, and therefore development in Repast might be more efficient. Repast

uses the JAVA programming language, while Unity uses C#, both OOP languages.

Models developed in Repast are generally found to be in 2D with the platform sup-

porting 2.5D visualisation and potentially fully 3D models, but would need to be

implemented through code along with tools for importing and manipulating 3D ge-

ometry, while Unity has native support for 3D mesh geometry and presents a 3D

cartesian environment by default. Therefore a conscious decision was made to de-

5https://ccl.northwestern.edu/netlogo/
6http://www.swarm.org
7https://cs.gmu.edu/ eclab/projects/mason/
8https://repast.github.io/
9https://unity3d.com/

10https://www.unrealengine.com
11https://www.yoyogames.com/gamemaker
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velop the model in Unity, as it was estimated that manipulating 3D geometry would

play a somewhat significant part in the model, and therefore a set of 3D editing tools

was necessary. Some additional, secondary comparisons between the two: Repast

does not have a default model viewer, although it is rather straightforward to imple-

ment a basic top-down view, while Unity supports virtual cameras for rendering 3D

scenes. Repast has high performance libraries for running the models in computing

clusters, while Unity can potentially support some form of distributed computing

if implemented; however for the purposes of this work, high performance was not

necessary. Finally, as Unity is not a dedicated ABM platform, it has the drawback

of not having extensive libraries specifically for ABM development; however some

tools from game development can be used for ABM development, such as wayfind-

ing libraries.

5.5 Summary: Building a Real-Time Agent-Based

Model of Public Space Activity

This chapter presented an outline and general overview of the general Real-Time

Agent-Based Model of Public Space Activity. Initial considerations regarding its

temporal nature were discussed, and the balance between near-future and near-past

events was discussed as an approach to real-time modelling. Following that, the

different sub-models were discussed, specifically the aggregate forecast sub-model,

and the spatial disaggregation model, first as inter-connected components in the

overall real-time model, and then each one separately in more detail. Two different

approaches for the forecast model were discussed and compared, and the most suit-

able one was identified. Additionally, an extended discussion was offered on spe-

cific aspects of the Spatial Disaggregation Model (SDM), which on the one hand

established the requirements at a conceptual level, and on the other highlighted a

highly suitable modelling paradigm, as identified in the ABM paradigm. Finally,

Unity was identified as the development platform, and its features were briefly dis-

cussed. In following chapters, the data capturing and analysis methodologies used
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in this work will be presented (Chapter 6: Data Collection and Analysis), specifics

of the SDM will be discussed in more detail (Chapter 7: Modelling Spatial Be-

haviour), the overall model application will be presented through two case studies

(Chapter 8: Case Study 1 - Hyde Park, Chapter 9: Case Study 2 - Queen Eliz-

abeth Olympic Park), and a discussion on results and final model outcomes will be

offered (Chapter 10: Discussion on Case Studies).





Chapter 6

Data Collection and Analysis

In this chapter, the methodologies developed for the capture and analysis of data

are presented, from observational site surveys, to data collection using Application

Programming Interfaces (APIs), to data mining of geographic data from social me-

dia platforms. The different approaches developed in this work will be discussed in

depth, covering the data sources themselves, techniques implemented for capturing

the data, both automated, as well as manual, methods employed in manipulating

and cleaning up the resulting datasets, initial data analysis and preparation, as well

as initial results, findings, and observations regarding the datasets collected. The

use of data in the development of real-time agent-based simulations will not be dis-

cussed in this chapter, but rather in the corresponding chapters discussing the two

case studies undertaken in this work.

Given the scope of this work, of simulating public space activity in real-time, mul-

tiple datasets were considered, for different purposes. First of all, major focus was

placed on datasets relating to individual human activity on the ground. In order to

capture such activity, this work collected data from micro-blogging social media

platforms, specifically Twitter and Instagram, which allowed for capturing individ-

ual users’ activity as it was being published (in real-time). In addition to social

media platforms, data on user activity was available from mobile device connectiv-

ity records via wireless network access devices, installed throughout the area of one
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of the case studies (Case Study 2: Queen Elizabeth Olympic Park (CS2:QEOP)).

This dataset includes detailed records of mobile devices, which are often carried on

the person, connected to the wireless network of the park. The above datasets were

considered as a proxy for actual human activity, able to be collected in real-time.

Additional data of user activity was collected via site surveys, in which counts of

visitor activity were recorded manually in situ. This data was considered as ground

truth data, reflecting actual events, and was used mainly for evaluating and calibrat-

ing the models developed in this work.

In addition to user activity data, a range of other datasets were considered, capturing

events that were deemed to potentially have an effect on human activity. One such

dataset is real-time weather and environmental data. Given the nature of the areas

investigated here, being public open spaces hosting leisure activities, weather con-

ditions were considered to have a major effect on the number and type of activities

taking place in a space at any point. Furthermore, data was collected, for a limited

period of time, on planned events that took place, which would be expected to draw

additional crowds on top of normal conditions. These were captured through the

Facebook social network platform, which allows users to create events and invite

other users to them. Finally, transport data was considered, as a proxy for people

arriving in the general area of interest, to be used as an indicator of potential visitors.

Overall, data sources considered in this work, along with their intended uses, are as

follows: Online platforms Twitter and Instagram were used to capture geolocated

Social Media (SocM) events, with the aim of calibrating and incorporating them into

the forecast sub-model (as described in section 5.2). For planned events, Facebook

events were gathered, with the purpose of incorporating into the forecast sub-model

as well. Weather and climate conditions were retrieved using the Dark Sky platform

(formerly forecast.io), aiming to inform the forecast sub-model. Transport and pas-

senger data was retrieved via the Transport for London (TfL) Application Program-

ming Interface (API), in an attempt to develop the alternative visitor supply forecast

sub-model (as described in subsection 5.2.2). Wifi connectivity data was provided
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by the London Legacy Development Corporation (LLDC), and was used to validate

overall model performance, as well as for cross-validation of user activity survey

data. Finally, ground truth data of user activity was captured though site surveys,

and was used to calibrate the Spatial Disaggregation Model (SDM) (discussed in

Chapter 7: Modelling Spatial Behaviour). This information is summarized in Table

6.1.

Dataset Data Source Purpose Dataset Accessi-
bility

Social Media Posts Twitter forecasting activ-
ity

Publicly Available

Social Media Posts Instagram forecasting activ-
ity

Publicly Available

Planned Events Facebook forecasting activ-
ity

Publicly Available

Weather Conditions forecast.io forecasting activ-
ity

Publicly Available

Wifi Connectivity LLDC validation Restricted Access
Transport & Passenger
Data

TfL forecasting activ-
ity

Publicly Available

Visitor Spatial Activ-
ity

Own Site Surveys validation & cali-
bration

Publicly Available
by Site Visit

Table 6.1: Datasets Used

The rest of the chapter will discuss in detail the different methodologies used to

capture, manipulate, and make use of the different datasets presented here. The

datasets will be presented by method of acquisition and data source. As such, the

four sections will cover online and social media data, WiFi connectivity sensor data,

manual site surveys, and transport data.

6.1 Online Data - Real-Time Data

This section discusses the methodologies developed and used for retrieving data

from online sources (remote sensing). Data sources include social media platforms,

environmental datasets, among others. These datasets’ characteristic is their stream-

ing, real-time nature, as it has been defined in previous chapters. Hence, datasets

and data points discussed here are available at the moment of capture, and refer to
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an ongoing phenomenon.

6.1.1 Social Media Data

Social Media (SocM) data in this work was collected from 3 platforms, Twitter,

Instagram, and Facebook. Regarding Twitter and Instagram, focus was placed on

individual users’ geolocated posts, whereas Facebook was used to retrieve planned

events taking place in the areas of interest. In broad terms, the rationale behind this

data collection is that individual Twitter and Instagram posts would function as a

real-time proxy for current visitor activity in the areas of interest, while Facebook

events would offer an indicator and partially account for observed increased activity.

Two points of discussion need to be introduced here: first, the real-time nature of

online SocM, and second, potential bias or other issues that arise through the use of

online SocM data.

On the first point, and the real-time nature of SocM: The nature of micro-blogging

platforms themselves encourages users to publish updates in real-time, for quick

consumption. It is this characteristic that has attracted interest from researchers,

who have investigated the dissemination of information in real-time through such

platforms, with particular interest on the use of Twitter in emergency response and

disaster detection (Mills et al., 2009, Sakaki et al., 2010, Cassa et al., 2013, Jongman

et al., 2015, Avvenuti et al., 2016), but also in urban real-time traffic monitoring

(D’Andrea et al., 2015, Kokkinogenis et al., 2015). It is generally agreed then that

events published through micro-blogging platforms are of a real-time nature, even

if their veracity and predictive capabilities are under study.

On the second point, that of data source bias: It is well documented that there

exists a demographic representation bias in online SocM, with populations using

online platforms at different degrees, varying by age, gender, and education, among

others (Greenwood et al., 2016). Additionally, content analysis of SocM datasets

tends to produce skewed results, when compared with offline/traditional surveys

(Miller et al., 2015, Cohen and Ruths, 2013). This work avoids any issues that
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might arise regarding content, as it does not undertake any content analysis, but

rather focusses on SocM dataset metadata to capture relevant information. Specif-

ically, this work approaches Twitter and Instagram datasets as Ambient Geospatial

Information (AGI) (similar to Stefanidis et al., 2011), capturing a post’s location

and timestamp, and discarding all other information.

6.1.1.1 Sources and Capture Methods

Data collection of SocM posts was performed using scripts written in the Python

programming language. Scripts were scheduled to run on midnight every day, and

collected relevant posts published in the last 24 hours. For Twitter data, the tweepy1

python library was used to access the Twitter Search API2, for Instagram data a url

request was used to access the Instagram API media endpoint3, while Facebook’s

API was accessed using the Facebook SDK for Python library4. The Twitter and

Instagram search queries included an empty string for relevant search terms, so that

all results would be returned.

Two spatial filtering methods were implemented for Twitter and Instagram data, to

return results originating from within the areas of interest. First, a search radius

was included in the search terms, so that events were returned only within a certain

distance from the center of the area, essentially applying a broad filter. Addition-

ally, by passing this spatial parameter in the query terms, the API automatically

filters out any results that lack geolocation, in both Twitter and Instagram API. A

second spatial filter was used for finer detail, in order to remove results that fell

outside the detailed boundary of the area. For this, a Point in Polygon function was

implemented, as described in Appendix A.2.

An additional filter was implemented for Twitter and Instagram data, to remove

multiple consecutive posts from the same user. The 30 minute mark was used as

1http://tweepy.readthedocs.io/
2https://dev.twitter.com/rest/public/search
3https://www.instagram.com/developer/endpoints/media/
4https://facebook-sdk.readthedocs.io/
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the cutoff period, so that after a post was captured from user A, any additional posts

in the next 30 minutes from the same user would be discarded. This was done to

account for differences in usage patterns between different people, as for example

oftentimes Twitter users might want to exceed the 140 character limit, by posting

multiple tweets in rapid succession. Since the collection algorithms developed here

do not store user information, these posts would appear as coming from different

users, and thus artificially increase the number of visitors recorded.

Twitter and Instagram data was then stored as CSV files, containing all posts of the

past 24 hours. Daily data was stored as a list of individual posts, in chronological

order, with each row containing a unique id, the timestamp of publication time, a

pair of latitude and longitude coordinates, and a source platform identifier. Overall

collection started on September 14th 2015 for the first case study in Hyde Park, and

on January 28th 2016 for the second case study in Queen Elizabeth Olympic Park.

Although data collection continued for two years, due to changes in Instagram’s

API, on May 31st 2016 Instagram data collection was terminated for both case

studies.

6.1.1.2 Preliminary Data Analysis and Cleanup

Some initial characteristics and general properties of the dataset can be seen by

looking at the raw data overview, with social media posts shown in daily totals for

a duration of 560 days for Case Study 1: Hyde Park (CS1:HyP) in Figure 6.1, and

424 days for CS2:QEOP in Figure 6.2. Values vary greatly, from the low hundreds

to almost 5000 for Hyde Park (HyP). Zero values indicate collection failure, days

where the automated collector scripts were not executed properly, and thus no data

was captured for that day. Two important things should be noted here: First, it

becomes immediately apparent from Figure 6.1 that Instagram data is much larger,

totalling approximately 10 times more daily SocM posts. Second, the stop date for

Instagram data collection (31st May 2016) is apparent, with a large value drop.

Given the sharp decline in values due to one source becoming inaccessible, and due



6.1. ONLINE DATA - REAL-TIME DATA 151

Figure 6.1: SocM Time Series - CS1-HyP

Figure 6.2: SocM Time Series - CS2-QEOP

to Twitter’s overall small daily sample, the 31st of May 2016 will be considered

as the end date for data collection, and all subsequent analysis of SocM datasets

will not include future dates after the end date. Moving forward, regarding weekly

fluctuations in daily totals: Vertical lines in Figures 6.1, 6.2 mark Sundays, which

given the nature of the two spaces (parks) are expected to have increased visitors,

and as can be seen in the figures, spikes in values broadly correspond to Sundays.

By further plotting daily totals by day type (Figures 6.3, 6.4), it is apparent that

weekends in general seem to attract larger crowds.

6.1.2 Weather Data

Weather and climate data was collected for a significant duration during this work,

starting on September 14th 2015, coinciding with the beginning of the collection

period for social media data on the first case study. Weather and climate data was

collected under the rationale that the areas under examination are public open spaces
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Figure 6.3: Daily Totals by Day Type -
CS1-HyP

Figure 6.4: Daily Totals by Day Type -
CS2-QEOP

hosting largely non-work related activities5, and therefore the presence and number

of such activities would be affected in large part by weather conditions.

The web service forecast.io6 is used to retrieve weather conditions in machine-

readable format. This particular service aggregates a range of weather data sources7,

and provides forecasts as well as archived past weather data. Weather data is pro-

vided through an API, by passing a pair of coordinates in the request url8, and will

return a set of future forecasts or past weather conditions (depending on requested

time). The response is in JSON format with multiple properties. Specifically, the

response includes weather conditions at a daily, hourly, and potentially minutely (if

requesting a near-future forecast) resolution.

In the context of this work, a set of parameters that could be identified as broad

weather descriptors was chosen. The main arguments for choosing a parameter were

the following: The parameter should be reliably returned, or its absence directly

relating to a value (e.g. the ’cloud cover’ parameter refers to the percentage of

sky occluded by clouds; its absence signifies clear skies, thus a value of 0 can be

inferred). The parameter should conceivably and fairly directly affect open space

activity (e.g. parameters such as ’visibility’ or ’windBearing’ were not included, as

5In the sense that users engaging in activities in these spaces are not required to be at that location
at any point in time, but rather choose to be present

6https://darksky.net/dev/docs
7https://darksky.net/dev/docs/sources
8https://darksky.net/dev/docs/forecast
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Parameter Abbreviation Unit
Hour hr #
Temperature temp C◦

Minimum Daily Temperature maxTemp C◦

Maximum Daily Temperature minTemp C◦

Precipitation Probability precP percentage (0-1 range)
Precipitation Intensity precInt inch/hour

Cloud Coverage cCov
percentage of sky occluded
by clouds (0-1 range)

Wind Speed wndSpd mph

Table 6.2: Weather Parameters

visibility distance or wind direction would have minor, if any, effects on a typical

park activity such as a walk; however, the ’windSpeed’ parameter was included,

as strong winds would potentially deter park visitors). The full list of captured

weather parameters is: Temperature (also min and max daily temperature, for daily

resolutions), Precipitation Probability, Precipitation Intensity, Cloud Coverage, and

Wind Speed. They are listed in Table 6.2, along with their units, where applicable.

Figure 6.5: Daily Min & Max temperatures

An overview of weather data collected is presented in Figures 6.5, 6.6, 6.7, covering

Temperature, Precipitation, Cloud Coverage, and Wind Speed at a daily resolution,

for the period between 14/09/2015 - 31/05/2016. The end date coincides with the

termination of service of one of the two SocM data sources, and signifies the period

for which data sets were considered to be available in full.
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Figure 6.6: Daily Precipitation

Figure 6.7: Daily Cloud Coverage & Wind Speed

6.1.3 Real Time Datasets - Correlations

The aim of this analysis is to investigate the effect of environmental and temporal

characteristics on public space use (measured as Social Media (SocM) posts) during

normal conditions. In this context, days with planned events are considered known

outliers, with artificially high values. As such, days with planned events, along with

zero value days (failed recordings), will not be considered for the rest of this anal-

ysis, as these records would introduce a strong bias. Even having removed known

outliers, increased activity on Sundays is further evident when comparing SocM by

day (Figures 6.3, 6.4). Most SocM are recorded during Sundays, averaging 750

daily total, with values falling sharply on the next days, and picking up again on

Saturdays.

Daily Aggregate This section will be looking at the effect that climate and temporal

characteristics have on recorded social media posts, first at the daily aggregate level,
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and later at an hourly level.

At a daily aggregate level, initial assumptions focused on temperature being the

main driver of park visitor activity (and thus social media activity), stating that days

with higher temperatures would attract higher visitor numbers. This turned out to

be a false hypothesis, as can be seen on Figures 6.8a, 6.8b, showing daily SocM

levels against daily maximum and minimum recorded temperatures.

(a) SocM - Max Temperature (b) SocM - Min Temperature (c) SocM - Temperature Differ-
ence

(d) SocM - Precipitation Probability (e) SocM - Precipitation Intensity

(f) SocM - Cloud Coverage (g) SocM - Wind Speed

Figure 6.8: SocM - Weather Daily Correlation

It is evident from the graph that no correlation exists between maximum tempera-

tures and SocM, at least for the time range in question, while daily minimum tem-

peratures exhibit some degree of negative correlation with SocM. It is interesting to
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note though that temperature difference between maximum and minimum recorded

daily temperatures provides the best fit of the three variables from a statistical point

of view, with a positive correlation Figure 6.8c. However, as temperature difference

does not directly relate to an attribute that could explain this behaviour, analysis

turns to other climate characteristics, more specifically cloud coverage, wind speed,

and precipitation probability and intensity, which should at the same time affect

SocM as well as temperatures. These characteristics are known to affect ground

temperatures (Easterling et al., 1997), and can furthermore be considered as creat-

ing unfavourable conditions for park visitors, thus reducing visitor numbers.

Cloud coverage exhibits a negative correlation with SocM, with a strong (for the

dataset) fit, as seen on Figure 6.8f. Similar results are displayed when comparing

SocM against wind speed Figure 6.8g, indicating that unfavourable weather condi-

tions have a negative impact on park usage, as would be expected. SocM and pre-

cipitation exhibit a similar relationship, although not linearly correlated. As seen on

Figure 6.8d, for precipitation values greater than 0 (chance of precipitation), SocM

values average at about 400 daily total posts, providing a potential baseline of park

activity regardless of weather conditions, possibly indicating restaurant visitors and

less weather-dependent activities, such as exercise activities.

Figure 6.9: SocM Hourly

Hourly Aggregate Analysis at a daily resolution identified some weather character-

istics as broad drivers of park visitor activity, as shown previously. In this next sec-

tion, activity will be investigated at an hourly temporal resolution, in order to cap-

ture the relationship between SocM and weather/temporal characteristics in more
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detail. SocM data exhibits fairly consistent periodic characteristics, following the

day/night cycle, as can be seen in Figure 6.9. Looking at hourly SocM totals against

hourly temperature, as shown in Figure 6.10a, it again becomes clear that on the

whole, there exists some correlation between temperature and park visitor activity,

however climate conditions do not appear to be the sole driving factor.

(a) SocM - Temperature (b) SocM - Hour

(c) SocM - Precipitation Probability (d) SocM - Precipitation Intensity

(e) SocM - Cloud Coverage (f) SocM - Wind Speed

Figure 6.10: SocM - Weather Hourly Correlation

Results of minimal correlation are exhibited when looking at other weather charac-

teristics at an hourly temporal scale, such as cloud coverage ( 6.10e) or wind speed

( 6.10f). Data points in these cases are scattered with no discernible patterns, with

the exception of precipitation, where, as expected, SocM values are at their constant

lowest (approximately 20 per hour) when any rainfall is recorded. Of course, this

behaviour of no relationship at hourly levels is expected. Given the temporal scale
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of 15 minutes, variation in SocM is caused more by hour of day and daily activity

cycles, than any other climate characteristic. Following this reasoning, a very dis-

cernible pattern is exhibited when looking at SocM by hour of the day, as seen in

Figure 6.10b.

Hourly SocM values are at their lowest during early morning hours, between mid-

night and 5 am, with valley values at 2 am. Activity starts to pick up at 6 am, and

rises steadily until a peak is reached at 3 pm. After this hour, values decrease again

steadily into the night, until they are at their lowest at 2 am again. This oscillation

in SocM values can be modelled using a 4th degree polynomial, in the form of y =

ax4+bx3+cx2+dx+e, with a = 0.001,b =−0.065,c = 1.15,d =−3.8,e = 4.87,

which when fitted to the data points, results in a coefficient of determination of 0.47

(Figure 6.11).

Figure 6.11: SOCM - Hour-of-Day: polynomial fit

6.2 Sensor Data - WiFi

This section discusses data relating to device connections over near-distance wire-

less networks, capturing mainly mobile devices carried on the person, and thus is

used as a proxy for activity in the area. This approach was deployed at the Queen

Elizabeth Olympic Park, and it involved the deployment of a large number of net-

work access points (approximately 65 devices) by the London Legacy Development

Corporation (LLDC) throughout the park, which record the number of devices cur-
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rently connected to them. The locations of the access points are known, and this

dataset can therefore be used to infer activity on the ground. Data from this source

was available for dates and times of site surveys as well, which allowed for the

combinatorial analysis and cross-validation of both datasets.

Detailed WiFi connection data is available for the month of March 2016, consisting

of anonymized unique individual connections at each access point. Additional in-

formation includes device session duration (total duration this device has been con-

nected to the network), currently connected access point per device (and inversely,

total current sessions per access point), volume of data received and transmitted,

connection and disconnection time per device per access point. Some discrepancies

were quickly identified, in devices connected continuously for extended periods of

time (more than 24 hours, and at times significantly longer, i.e. several months),

and so a filter has been applied to the whole dataset, removing any records with a

total continuous duration of more than 6 hours.

An overview of the dataset is presented in Figure 6.12, a time series of daily totals

of connected devices for the whole network. Daily volumes stay fairly consistent

throughout the period, with one notable peak (day 20) and one significant dip (days

27-29). Further investigation at hourly totals (Figure 6.13) highlights a strong pe-

riodic day-night cycle, with values during nights and early morning hours being

consistently low. Therefore, any change in daily totals is largely a result of daily

activity.

Figure 6.12: Unique Wifi Connections - Daily
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Figure 6.13: Unique Wifi Connections - Hourly

6.3 Site Surveys

For the purposes of evaluating all of the data capturing techniques developed here,

a series of site surveys where performed, which captured actual activity on the

ground. These function as the ground truth data for all cases, and were performed

over multiple days, for both of the case studies undertaken in this work. The aim

of these surveys was to record the total number of park visitors at a given moment

throughout the area, as well as specific locations of individuals, along with type of

activity.

6.3.1 Aim

The aim of the site surveys was to capture ground truth data regarding human ac-

tivity in the areas of interest. This data was needed first of all to provide context

for the rest of this work, and to better frame expectations from the models devel-

oped later. Additionally, spatial output from these surveys was used to calibrate the

Agent-Based Models (ABMs) developed in this work, discussed in later chapters.

Two broad categories of human activity were considered, ’movement’ activities and

’stationary’ activities.
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6.3.2 Methodology

Data was captured using a purpose built application installed on a mobile device9. It

provides an interface for a series of counters with customizable labels, which when

clicked/tapped by the user record a new event of the particular label (Figure 6.14).

Additionally, the recording action captures the time of the event in unix time as

provided by the Operating System of the device. Furthermore, the recording action

captures the geolocation of the device at the time of the event, as provided by the

device’s GPS sensor. The application is also designed to automatically record an

event of default ’GPS’ type every 5 seconds, which records the device’s/surveyor’s

current location. This latter functionality is provided for fieldwork over large areas,

to provide a track of the surveyor’s path throughout the survey. After the survey,

the dataset is retrieved as a CSV file, containing every event recorded, sorted in

chronological order, essentially a series of space-time events.

Before the site visits, the paths to be taken were carefully planned so as to cover as

much of the area as quickly as possible. During the survey, park visitor activity was

recorded. The classification included two categories, walking visitors, and sitting

visitors. The surveyor strictly followed the path, and recorded all individual park

visitor activity that was evident within a range of 100-150 meters. This essentially

creates a buffer zone around the path line of 150 meters (Figure 6.15). The sur-

veying application functionality records the device’s location when a new event is

appended, meaning that all activity is recorded on the surveyor path (Figure 6.16).

Any locations outside the area covered by this buffer were not captured. Care was

taken to include as many locations as possible, and to capture sharp changes in ac-

tivity density. Areas that were unrecorded were nonetheless chosen so that they

exhibited similar activity to nearby recorded areas (observed during the visit, but

not recorded), so that data could be inferred if needed, via a linear interpolation/ex-

trapolation from nearby activity.

9Fieldworker, developed by researchers Panos Mavros and Katerina Skroumbelou at Centre for
Advanced Spatial Analysis (CASA).
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Figure 6.14: Fieldworker Site Survey Application

Finally, a compromise was made regarding moving visitors, to only record park

users who crossed paths with the surveyor in angles up to 180 degrees. In combi-

nation with the surveying distance of 100-150 meters, this means that a cross plane

approach was implemented: an imaginary vertical plane centered on the surveyor,

spanning 100-150 meters in each direction perpendicular to the forward direction,

and facing forward, which when crossed by others, results in the recording of a new

event. Essentially this means that any visitors approaching the surveyor from behind

were not recorded (Figure 6.17). This compromise was made to avoid potentially

double or triple counting moving visitors, who might overtake, then be overtaken by

the surveyor while resting, then overtake again, etc. Furthermore, a uniform move-

ment is assumed for all visitors, meaning that park visitors have an equal chance

to be moving in any direction in the park. Therefore, by only recording movement
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Figure 6.15: Site Surveying Overview Figure 6.16: Site Survey Result

Figure 6.17: Surveyor Cross Plane Capture: Black dots mark pedestrians that were or will
be recorded, white dots mark pedestrians that will not be captured, given
steady trajectories

happening at angles up to 180 degrees, it is assumed that half of the moving visitors

are recorded. Finally, the surveyor walking speed was at a quick pace, overtaken

only by park visitors that were at a jogging or running pace.

6.3.3 Data Preparation and Cleanup

The data was imported into GIS software to cleanup, prepare, and analyze. The first

step was to disperse individual data points from the path line back to their locations

in space. The application records the geolocation of the device at the time of a

capture event, and so all recorded visitors appear to be on the path line (since that

was the location of the device that was used to record the event) (Figure 6.18a).

Therefore, for each event, a new random location was calculated, so that: it was
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(a) Activity Capture (b) Activity Dispersion

(c) Activity Displacement

Figure 6.18: Survey Activity Dispersion. 6.18a: Events are captured as being on the sur-
vey path. 6.18b: In post-processing, events are randomly dispersed around
the capture location. 6.18c: Activity displacement between actual locations
(black) and estimated (white).

within recording distance (100 meters), and was on valid terrain (e.g. not in water, as

water activity was not recorded) (Figure 6.18b). New points were drawn at random,

assuming a normal distribution around the surveyor location. The new points were

then considered as the actual location of the recorded activity for all analysis regards

(Figure 6.18c). The script used for the re-dispersion is shown in Appendix A.5.3.

6.4 Transport Data

An additional approach to estimating activity in public spaces was explored, in

which publicly available transport data was considered as an indicator. Essentially

this approach assumed public space as the direct receptor of outflows from pub-

lic transport and thus if the number of people arriving in an area were known, the

estimation of activity could be further estimated.
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6.4.1 Datasets

Some exploratory statistics regarding the transport datasets available are presented

here. Available data is split into two main datasets, one covering long-term statis-

tics for the whole network, the other providing sample detailed data for individual

stations.

6.4.1.1 Overall Performance

The first dataset, which includes long-term statistics, is published by GLA under a

UK Open Government License (retrieved from data.london.gov.uk/dataset/public-

transport-journeys-type-transport). It provides the number of journeys on the TfL

public transport network, broken down by mode of transport. Data on London Un-

derground and Bus journeys covers the date range from April 1st 2006 - present.

It is a rolling dataset, updated monthly, with approximately 2 months of delay be-

tween collection and publication. Temporal resolution is at 28-day periods, totaling

13 periods per year, each period normally starting on a Sunday and ending on the

Saturday 28 days after. Years change on the 1st of April each year, which produces

varying length effects for the first and last period each month, resulting in edge pe-

riod lengths ranging from 25 to 32 days. Counts are normalized for all operations

on this dataset, either to journeys per day or per typical period length (original value

/ period length * 28), depending on operation (Figure 6.19).

Data presents a seasonal pattern within years, with an overall increasing trend.

There is a notable dip in values from year 2008-2009 to 2009-2010. Following

that point in time, data suggests a steady linear increase in journeys. For all cal-

culations henceforth, the first 3 years are discarded, 2009-2010 is used as the first

period in the time series, with April 1st 2009 being the first day in the time series.

Linear relationship between subsequent years post-2009 is further suggested by

looking at the linear regression plots for average daily journeys over time. Plotting

the curve for daily period average trends results in r2 = 0.592 (Figure 6.20), while
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Figure 6.19: Tube Journeys by period: 2006-2015

aggregating at the daily annual average level results in r2 = 0.991 (Figure 6.21),

with quite similar intercept and slope, therefore suggesting an acceptable linear

overall trend.

Figure 6.20: Underground Journeys per Period

Figure 6.21: Underground Journeys per Year

Regression analysis results hold true for specific period trends as well. A plot of

daily averages for 4 periods over the years reveals a similar linear trend, with r2

values >0.9. An exception here is present in trend lines for periods falling in the



6.4. TRANSPORT DATA 167

month of August, specifically periods 5 and 6. Including all years post-2009 results

in r2 values of 0.706 and 0.857, due to increased recorded traffic during the Olympic

Games hosted in London in 2012. Removing these data points results in r2 of

0.991 and 0.992 respectively, much closer to overall values. For this reason, further

calculations will disregard these two data points.

6.4.1.2 Sample Exits at Stations

The second dataset includes sample detailed data on passenger counts entering and

exiting individual stations. It is published by TfL under a UK Open Government

License (retrieved from api-portal.tfl.gov.uk). It includes daily passenger counts for

each individual tube station, for a typical weekday, Saturday, and Sunday. Temporal

resolution is at 15-minute intervals, spanning a full day. Counts are based on an

average over five weeks, with the majority of data collected in November-December

2012. This paper focuses on passenger exits, the methods presented here however

can be similarly applied to entry data.

Counts at each day start and end at 2:00 am, at which time no trains are travelling,

therefore guaranteeing zero passengers and a smooth break between days. For the

purposes of this work, data has been reformatted to fit a period starting and ending at

midnight, by appending the previous days data from 00:00 - 2:00am to the current

day dataset. This results in the introduction of an additional dataset for Monday

data, matching Sunday values for 00:00 - 2:00am, and weekday values from 2:00am

until midnight.

Exit data for weekdays shows a sharp rise around 9:00am, as is expected from the

morning peak time (Figure 6.22). Exit counts remain constant throughout business

hours, up until a rise around 6:00pm, for the afternoon peak time, dropping slowly

for the evening. Exit peaks alternate expectedly between central and peripheral

stations, with central stations showing a sharp spike in the morning and a small

bump in the afternoon, and vice versa from the peripheral stations.
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Figure 6.22: Passenger Exits at Stations during Weekdays - 15 min

Saturday exit data shows a steady rise throughout the day from 9:00am until

7:00pm, and a fairly sharp rise during evening hours, with counts staying relatively

high until midnight. Sunday data shows a sharp drop from midnight until 2:00am,

as is expected from crowds returning from the Saturday night. Throughout the day,

exits rise steadily until noon, remaining constant until 8:00pm, after which they

drop steadily.

6.4.2 Estimating Real-Time Tube Traffic

This section discusses a method for estimating current use of London Underground

network, measured at terminals (tube stations) as passenger exits at a time scale of

one minute. The process is carried out in 3 different steps:

1. Interpolation of daily total (disaggregation method)

2. Extrapolation of current (or future) daily total

3. Disaggregation to minute count at station
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6.4.2.1 Interpolation of daily total

Disaggregation to daily values is performed using a linear interpolation method (as

described in Appendix A.1). One of the main problems with the available historic

data is the varying length of edge periods in different years. These periods vary in

length from 25-31 days, and by using the linear interpolation method, daily disag-

gregated values are unaffected by this fact. Further notes regarding the application

of this method to the specific dataset of Tube journeys are presented here.

Although daily variation throughout the week is evident, for the interpolation and

extrapolation stages days are assumed as similar. This produces a value for a typ-

ical date for a specific date, which is an unrealistic value, but allows for further

calculations without introducing complications at this stage.

Detailed sample data is available for daily variation throughout the week, as well

as detailed quarter hour counts per station. This sample data comes from sample

counts in November 2012. To be able to work with these detailed data sets, esti-

mated typical daily values are also expressed as a ratio against average November

2012 daily values, acting as a modifier for said dates. This allows for a later applica-

tion of calculated daily modifiers to detailed sample data, arriving at high temporal

resolution estimates.

6.4.2.2 Extrapolation of current and future daily total

This project uses archived journey data to estimate current use via linear extrapola-

tion. Existing data covers the period 2006-present, aggregated at 28-day intervals,

with edge periods (first and last in year) of varying length. Using the disaggrega-

tion method described previously, this model calculates the values for the date in

question (month and day) in previous years, and extrapolates to current date.

Looking at the historic data available, there is a dip in values during the 2009-2010

period, with a steady rise following that. Given the steady rise post-2009, pre-2009

values are not used, and a linear model is fit to remaining dates.
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The model calculates values for dates in question in previous years, expressed as

ratios against a fixed value, in this case the daily average for period 10 (November-

December) of year 2012-2013. A linear curve is fit to these values and the current

date value is calculated from that. An exception here is made for dates falling within

the period of July 20th and September 14th. In these cases, historic data for the year

2012-2013 are not included, as these periods are a known outlier due to London’s

hosting of the Olympic Games leading to increased traffic.

Further to the extrapolation, values are calculated as a typical day for that date, ie

at this point all days are assumed to hold equal weight, without weekday-weekend

variation. This eliminates the issue of a date of interest falling on different week-

days in previous years, skewing the result. Also, by expressing the value as a ratio

against November 2012 average, the value acts as a modifier to detailed sample data

available from that period. Following the calculation of the daily value for the date

in question, by applying the daily modifier to daily totals for the day type (weekday,

Saturday, Sunday), the final total daily count estimate is calculated.

Figure 6.23: Tube Journeys by period: 2014-2015

For validation, values for the year 2014-2015 were calculated using the prediction
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method discussed here and subsequently compared to recorded values as published

by the authority (Figure 6.23). Values were calculated for each individual period,

13 in total, covering the time from April 1st 2014 to May 31st 2015. Period totals

were calculated as the sum of daily totals for all days in period, by estimating each

daily total.

Estimated and actual values are fairly consistent, with major discrepancies observed

at near-edge periods at both ends (p1, p2, p12, and p13). These discrepancies are

attributed to two factors. First, by looking at specific period trends over the years, it

is evident that three of the four (p1, p2, p12) show unexpected outlier values.

Second, regarding edge periods (p1 and p13), there is a known issue caused by their

variable duration, different from the varying period length issue discussed previ-

ously: As mentioned, daily values are calculated as a ratio against a known value

of a typical November 2012 day. In this context, typical November 2012 day is cal-

culated as the average of 20 weekday, 4 Saturday, and 4 Sunday totals, essentially

assigning mentioned values as weights to different day types. In the case of edge

periods of different (not 28 days) lengths, these weights are known to be different

than a typical 28-day period, which, when values are converted back from typical

to day type totals, result in these discrepancies.

6.4.2.3 Disaggregation to minute counts at station

Detailed passenger exit counts are also available, showing exits per station at quarter

hour intervals. This data comes from sample counts during period 10 of year 2012-

2013, representing typical days in November. By applying previously calculated

daily modifiers to this data, it becomes possible to estimate current quarter-hour

exit counts at individual stations (Figure 6.24).

The final step requires the disaggregation of quarter hour totals to minute values.

There are a few different approaches, depending on application. A simple approach

is that of averaging the total to minutes, each minute having the same flow of exit-
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Figure 6.24: Passenger Exits at Station - Period Average

s/minute for the current 15-minute period, with artificial steps introduced between

periods. Although this approach is fairly simple and straightforward in regard to

disaggregation models, given the already high temporal resolution, it might result

in acceptable values, depending on application.

Another approach might be the application of a second round of disaggregation,

from 15 minutes to one minute. Since the periods have a fixed 15-minute length,

either the linear interpolation method presented earlier, or various other disaggrega-

tion methods can be applied, in order to arrive to minute values.

Given the nature and temporal resolution of available data, it being archived and

aggregated to approximately monthly periods, this approach presents some notable

limitations. Initial steps of disaggregation to daily values and extrapolation to cur-

rent day values provide an acceptable result, as can be seen when comparing pre-

dicted and actual values for the annual period 2014-2015 (Figure 6.23). However,

a key limitation is encountered when attempting to disaggregate to quarter-hour

values. As the only available dataset at this resolution includes a single weekday,

Saturday, and Sunday, any disaggregation at this scale necessarily makes use of
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this dataset. This results in unrealistic final values, as individual stations exhibit

minimal variation: end result is essentially the quarter-hour sample dataset, scaled

slightly according to period (Figure 6.24). Furthermore, even in the case where ad-

ditional high resolution datasets were available (e.g. smart ’Oyster’ card data and

individual passenger journeys), the fact that such data is archived continues to pose

a limitation within the real-time scope of this work. Additionally, this proof-of-

concept approach of estimating current passenger volumes focused on Underground

data, which arguably is the mode of transport with the best data coverage. To con-

sider transport infrastructure as drivers of public space activity, additional modes of

transport would need to be considered (e.g. buses, taxis), which would potentially

require very different data capturing and analysis approaches.Therefore, due to the

reasons discussed here, this approach for estimating current public space activity

can be ruled out as being suitable for further analysis.

6.5 Summary - Finalized Data Formats

Considering the range of datasets discussed in this chapter, a summary is offered

here. This section will briefly highlight each dataset’s format and characteristics,

and consider their overall properties.

Real-Time Data True real-time datasets identified in this work were social media

data (Twitter, Instagram), weather conditions (forecast.io - multiple weather sta-

tions), and live public transport arrivals (ultimately not used). Site surveys are non-

real-time by definition, as they are non-automated processes. WiFi datasets used

in this work are not real-time: although they were collected at fine temporal inter-

vals, they were made available much later (specifically, months), after collation of

larger periods. Still, the potential (at least from a technological point of view) exists

for WiFi data to be made available in real-time, although that would require further

discussion of research ethics, regarding the real-time tracking of individuals. Trans-

port/Passenger data was neither real-time, not actual, as it originated from archived

synthesized data, and resulted in estimates. A summary is presented in Table 6.3.
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Dataset Temporal Resolution Publication Delay
Twitter Timestamp None - Instant
Instagram (pre 2016/05/31) Timestamp None - Instant
Instagram
(post 2016/05/31)

N/A N/A

Weather Hourly None - Instant
WiFi Connectivity Records Timestamp Months
TfL Exits at Stations 15 minutes (averaged over

multiple weeks)
N/A - Single Publication

TfL Monthly Passenger
Volume Statistics

Monthly Month

Table 6.3: Dataset classification in terms of temporal characteristics

Temporal Characteristics Social media data was considered as repeating/periodic

time series, at a daily, hourly, and 15-minute resolutions. Weather conditions were

similarly considered. WiFi data was also considered as periodic time series, avail-

able at 1-second resolutions, but analyzed at lower resolutions (15-minute and

hourly), for the days that data was available. Site surveys were considered as fixed

points in space (no temporal continuity).

Spatial Characteristics Social media data was ultimately not considered as spatial

data, as its geolocation classification system proved to be too coarse and/or unreli-

able. Weather conditions were also considered as a-spatial, given that no differences

in weather conditions would or could be detected between two different locations

in the area of interest. WiFi data was treated as spatial data, at a medium resolu-

tion (a data point was considered to be accurate to within 70 meters), although bias

was known to exist. Site survey data was considered as reliable in terms of spatial

characteristics, with data points accurate to within 70-100 meters.



Chapter 7

Modelling Spatial Behaviour

This chapter discusses the methods used in this thesis to simulate the emergent be-

haviour of individuals in a virtual spatially-explicit environment. It builds directly

on two of the three main fields identified and discussed extensively in this work,

specifically Public Space Use (PSU) studies and Agent-Based Models (ABMs), as

they have been presented in Chapters 2 and 3 respectively. The ABM paradigm

will be used to implement observations of human spatial activity in a simulation

environment, with two aims: First, to evaluate and test such findings, through sim-

ulation. Secondly, to employ the resulting spatial behaviour ABM in simulations of

real-time models of public space activity.

The development process will be discussed in detail, from the codification of ob-

served behaviour, to the development of theoretical models of individual compo-

nents, to the computational implementation of such behavioural components, to the

evaluation of their implementation in synthetic populations via an ABM framework.

The ABM framework that will be used to describe the models of PSU developed and

implemented in this work is the updated 2nd version of the ODD protocol (Grimm

et al., 2010). For the purposes of testing the model during development, a simple

representation of a park was created and used that included all of the entities and

characteristics required in the model. It does not correspond to any of the two case

studies, nor any actual place, and will only be used in this chapter for the presenta-
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tion of the ABM developed here.

7.1 Overview

7.1.1 Purpose

The purpose of this model is to realistically simulate spatial public space activity, as

generated through the behaviour of individual human users, acting and interacting

both between themselves and with the mostly static environment of the simulation.

One of the core aims of the model is to produce a framework for perpetual sim-

ulations, where a simulation is designed without a predetermined end, but rather

is configured to run continuously, with the explicit aim to continuously accurately

capture and reflect real-time activity in a space. Therefore this model does not aim

to produce an ideal solution to a problem or to find optimal values of parameters,

other than the minimization of error between actual and simulated activity.

7.1.2 Entities, State Variables, and Scales

7.1.2.1 Entities

Agents The main entity type in this model is the individual agents, which represent

users of simulated space. Agents in the simulation are physically represented by a

simple primitive 3D model (Figure 7.1). They are synthetic humans that interact

and engage in activities appropriate to the overall environment type. This work

focusses on public space, and more specifically parks, as such agents in this model

represent park visitors. The agents have behaviours that are classified into two

broad categories: Movement (moving to/from a specific location) and Stationary

Activities (Agents engage in activities that are considered to be fixed in space -

even if the actual activity includes movement eg. sports, the activity takes place

within a predetermined area eg. playing field, and thus fixed in space). The agents

essentially pick a location at which to engage in an activity or perform an action,
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and then move to that location.

Figure 7.1: Agent Virtual Avatar

Environment The environment within which the agents act and interact is explicitly

represented, via a 3-Dimensional virtual model of the actual space (Figure 7.2).

Figure 7.2: Virtual 3D Environment

The environment encompasses all of the static physical elements in the simulation

that constitute the environment within which agents act, and that potentially affect

agent behaviour. Given the focus on park activity in these simulations, elements in

the environment include the different types of terrain (eg. paths, lawns, etc, more in

the next section ”State Variables”), trees, features, buildings and points of interest

in the park (fountains, restaurants, etc), as well as the gates, designated entrances

and exits of the space (Figure 7.3).
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Figure 7.3: Exploded Isometric View of 3D Environment Components

Controller The controller is a singleton high-level entity in the model, tasked with

controlling most of the higher-level functions. These include the control of simula-

tion variables such as time, and environmental conditions, such as simulated time of

day, day type, weather, etc. More importantly, the number of agents is expected to

fluctuate widely during the course of the simulation, and the controller is the entity

which executes the functions that adjust the total agent population.

7.1.2.2 State Variables

Agent State Variables Agents represent human park visitors, and each individual

agent is described through a set of state variables. These are (Table 7.1):

• Group Size: The number of individual humans represented by this particular

agent. Previous studies (Costa, 2010, Jazwinski and Walcheski, 2011) have

demonstrated that people in public spaces often appear in groups, with most

sizes between 2 and 5 people per group, 2 the most often. Relationships

between park visitors are not included in this model, members of the same

group are assumed to exhibit uniform behaviour, and so are modelled as a
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Variable Value Type
Group Size integer
Location 3d Vector
Interaction Distances float
Movement Speed float
Age integer
Lifetime integer
Current Activity activity type
Activity Duration integer

Table 7.1: Agent State Variables

single agent, with this variable informing on group size.

• Location: The position of the individual agent within the virtual space.

• Interaction Radii: The different distances at which this agent responds to.

Other agents and elements within these distances will affect this particular

agent’s behaviour. Distance lengths are affected by group size, especially

close interaction/personal space radius, which correlates with group size.

Specifics for these radii are discussed in 2.2.3: Distances in Social Inter-

action (Gehl, 1987, Ciolek, 1983).

• Speed: The speed at which this agent moves through space. Agents are as-

sumed to use walking as their only means of transport. Movement speed is

assumed to vary slightly per agent, around a mean of 1.5 m/s (Ishaque and

Noland, 2008).

• Lifetime: The total time period this agent will exist in the simulation, repre-

senting the park user’s visit length.

• Activity Type: Walk, Sit, Prepare-To-Sit, Prepare-For-Sports, Sports, Visit

Feature, Exit.

• Current Activity: The activity the agent is currently engaged in. Can be one

of the previously defined activity types.

• Next Intended Activity: The activity the agent intends to engage in next. Can
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be one of the previously defined activity types.

• Activity Duration: The duration of the current activity/next intended activity.

Environment State Variables The Environment holds a number of state variables

as well, which affect agent behaviour. These are:

• Terrain Type: Different types of terrain have an effect on agent behaviour.

Paths are the preferred terrain to walk on, green areas are preferred sitting

locations, water presents a limit for activities and movement, but not vision.

• Features: Main park features, eg trees.

• Attractions: Main attraction elements in the environment, might include foun-

tains, restaurants, etc. Elements fixed in space that are known to have an

attractiveness in terms of human activity.

• Time of Day: The model captures park activity throughout the day, and as

such the time of day is considered as an independent state variable, ie. it is

continuously incremented, cannot be affected by other variables.

• Day of Week: One of the seven different days of the week. Day types are

grouped into weekdays and weekends, as these have been observed to attract

different behaviour.

• Weather: This model deals with outdoor environments, and as such it expects

weather conditions to have a significant effect on park use.

7.1.2.3 Scales

The different scales in the model (temporal and spatial) are approached thus: Time

is considered in a continuous fashion, with one timestep in the simulation repre-

senting one second of simulated time. Agents act in an asynchronous fashion, on

the basis that all of their potential activities will always last more that one timestep.

Each agent is locked into execution of its current activity until it ends, and when the
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activity duration comes to an end, the agent continues with the next action. Tech-

nically, all agents update at the same time in asynchronous fashion, however each

agent is locked into execution of its current activity until it ends, and given the high

temporal resolution, agents are assumed to not be updating any major states during

most timesteps.

Space is considered as a continuous element in 3 dimensions (x, y, and z), with

potential overlap of elements in the vertical dimension, eg. bridges. Extents depend

on application/target space, but are generally found to be approximately 1km x 1km,

with one distance unit in model space representing one metre.

7.1.3 Process Overview and Scheduling

The controller acts as the master element in all respects, controlling the high level

functions of the model. The model described here is a perpetual model, by which

meaning that the simulation is designed to run indefinitely, simulating/recreating

real-world conditions and activities in a public space. The controller in this frame-

work controls the modifiable environmental parameters accordingly (eg advances

time, sets weather conditions) and more importantly controls the total number of

agents in the simulation. These elements are adjusted/updated at a more infrequent

rate (every 900 timesteps or seconds, thus every 15 minutes in simulated time).

The controller’s aim is to have the correct number of agents in the simulation, as re-

trieved and evaluated against input from external sources. It adjusts the overall agent

population accordingly, by either introducing additional agents at the beginning of

the controller update, or by flagging older agents to execute exiting behaviour and

remove themselves from the simulation (Figure 7.4). Furthermore, the controller

records, collates, and visualizes core model behaviour, such as total population,

aggregate activity, crowding, etc.

The environment is mainly a passive static element, meaning it has no control over

its variables, the few which are modifiable are set by the controller. These include
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Figure 7.4: Model Controller Loop

accessibility to features and points of interest depending on time of day (eg opening

hours of establishments in the area), or score penalties for specific activities/areas

based on weather (eg. lawns become even more unfavourable walking terrain during

unfavourable weather conditions).

The agent process overview is as such:

1. Agent is introduced into the area.

2. while the agent’s age is less than their predetermined lifetime, the agent exe-

cutes the following steps:

3. Agent decides on its next activity

4. If said activity requires preparation, the agent begins preparing (often an iter-
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ative cost minimization process) until a condition is met.

5. When the agent has completed any/all required preprocessing tasks, it moves

to the desired location and engages in the intended activity (plants themselves

in space) for a predetermined duration.

6. At the end of the activity duration, the agent again decides on its next activity.

7. Once their lifetime is reached, the agent removes themselves from the area.

Figure 7.5: Agent Behaviour Flowchart

The agent activity decision-making process and is modelled as a Probabilistic

Finite-State Machine (PFSM). At each activity decision step, the next intended ac-

tivity depends on which activity the agent has currently completed. For example,

walking activities are often followed by another walking activity. Stationary activ-

ities (eg sitting) are never followed by a stationary activity, but lead to a walking

activity, either as a random walk, or by following a path to the exit.
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Figure 7.6: Agent Decision Process as a Probabilistic Finite State Machine

7.2 Design Concepts

Basic Principles Foraging Agent Behaviour: Each agent at its core exhibits a for-

aging behaviour, by which it pursues the maximization of some element/variable.

This cost variable often represents comfort. Essentially each agent attempts to find

the optimal location for their intended activity, with the definition of optimal de-

pending on environment parameters, as well as other agents’ established behaviour,

ie it is a local optimal (local both spatially, in the agents vicinity, and temporally, as

agents spend a limited amount of time for precalculation/foraging). This principle

is implemented exclusively at the submodel level.

Evaluation of PSU findings: The model aims to evaluate existing findings and ob-

servations on human social activity in public spaces. Therefore, it evaluates whether

the proposed/observed behaviours, when implemented in a model at the individual

level, produce realistic/observed aggregate behaviour.
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Emergence Spatial Distribution of Activity at any point in simulation time is ex-

pected to be a product of environmental variables, as well as (and mainly) interac-

tion of agents, highly dependent on agent preferences and simulation conditions.

Adaptation The agents generally lack any immediate reactive behaviour, ie they

do not respond directly to changes in their environment. The main behavioural

element is their attempts to identify and locate themselves in appropriately crowded

locations, so that they have enough agents around them, but not too many.

Objectives The main objective of each agent entity is to identify the location with

a good crowding score, ie, plenty of agents in the general vicinity, but with enough

free space in a small radius, free of other sitting agents. Locations are sampled at

random within the agent’s vision range, and their scores are calculated as sums of

nearby agents: other walking and far agents are counted positively, while stationary

agents at a close distance are counted negatively.

Sensing Agents are aware of some environmental variables, such as time of day, day

of week, weather conditions. They also employ vision, and they are able to detect

other agents and the terrain around them. Sensing other agents is used to calculate

location scores, while terrain inspection is used to identify potential suitability of

locations in terms of terrain, as well as to aid in calculating a path to target location.

Finally, at specific cases (and this is a minority) agents have global terrain knowl-

edge, specifically when they are required to navigate to a far destination (outside

their vision range). These cases involve fixed locations, such as a feature/point of

interest, or an exit.

Interaction There is minimal interaction between agents, as agents do not exchange

or share any type of resource in the model. Agents are only aware of other agents

insofar as crowding is concerned.

Stochasticity The majority of agent state variables and submodels are assumed to

run on random functions, with variables drawn from constrained random and/or
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normal distributions. These include speed, lifetime, intended activity, activity du-

ration, etc, but also overall movement, which is modelled as constrained angular

random walks on a weighed surface.

Observation The model controller records the majority of individual agent state

variables, at multiple times in the simulation. Main variables of interest are the

location of agents, their current activity, as well as aggregate or overall variables,

such as total population.

7.3 Details

7.3.1 Initialization

The aim and purpose of this ABM, as described here, is to function in a perpet-

ual fashion, simulating human activity in a fixed real-world location, as it is cur-

rently exhibited (i.e. in real-time). In this regard, it should not be concerned with

initialization, as ideally, it is initialized once, and consequently runs indefinitely.

Additionally, state variables and other parameters are constantly redefined during

run-time, as informed by external sources. The majority of parameters are either set

by external sources (either datasets, or models), or are static in nature, and there-

fore always the same. Therefore, it can be considered that the initial state of the

model is known, with the state variables and conditions being those observed in the

real-world location at the current time, and that the Current agent population is es-

timated by the forecast sub-model (discussed in section 5.2), based on time of day

and weather conditions.

One aspect of the model that is potentially not set by external sources is the spe-

cific agent state variables (e.g. location, lifetime, activity, activity duration, etc).

In cases where visitors are expected to be in the area during model initialization

(i.e. initializing the simulation within park open hours), then these attributes are

drawn randomly from a normal distribution, as discussed later in this chapter (sub-

section 7.3.3). This is in addition to normal agent entity initialization, as entities can
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be assumed to be engaged in an activity, and be further in their lifetime. Otherwise,

initialization of agent state variables is similar to when a new agent is introduced

into the normal flow of the simulation.

7.3.2 Input Data

The model requires input from multiple external data sources, feeding into it in real-

time. These datasets and input feeds are discussed in detail here, according to the

model aspect they apply to.

Regarding visitor population/agent entity population, external input is used both

to drive the overall population in the near-future, and to evaluate recent outcomes

of the model. For near-future estimation, the predictive linear regression model of

social media-weather is used, as discussed in Section 5.2.2: Total Visitor Volume

Approach. This predictive model offers an estimate of near-future activity in the

area of interest, calculated as an outcome of weather conditions and temporal char-

acteristics. It essentially is fed into this ABM as a single integer value representing

the total expected number of visitors for the next 900 seconds (15 minutes). For

evaluation of recent activity, geolocated social media events originating from the

area of interest within the last period of interest are collected, and compared to the

predicted amount during the previous prediction phase. This comparison is used to

evaluate the model in terms of overall performance, and is further used to correct

the model.

In terms of temporal characteristics, a reliable external reference is used to inform

the model of the current time, date, day, etc at the area of interest. For this purpose,

either System Time as retrieved from the computer running the simulation can be

used, or an online tool/web-service can be queried, to retrieve the current time. An

online resource is more favourable, as it provides an approach less prone to errors.

Weather conditions play an important part of the simulation. These are retrieved au-

tomatically at each controller update phase, and include both current conditions and
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a prediction of near-future conditions. An online weather forecast service is used1,

which collates weather data from multiple sources and weather forecast models, and

which is queried through its Application Programming Interface (API) for weather

conditions at the location of interest.

7.3.3 Submodels

7.3.3.1 Population Control

The controller entity is responsible for high-level processes, including controlling

the agent population in the simulation. The model discussed here aims to provide

a perpetual simulation, in which simulated entities correspond to and reflect real-

world conditions at the current time. The mechanisms for controlling the simulated

agent population are discussed in this section.

As discussed earlier, the controller updates at fixed intervals, every 15 minutes in

simulated time. During these updates, the controller attempts to correct any differ-

ences between actual public space user population and simulated agent population.

As a first step, it receives an integer value reflecting the number of visitors/users ex-

pected to be in the area of interest during the coming period (until the next update)

on average. This is a predicted value, calculated from an external model (see Sec-

tion 5.2.2: Total Visitor Volume Approach). Additionally, the forecast population

value for the previous period is compared with the actual recorded population for

the previous period, in a validation step, and the difference is added to the predicted

value for the next period. This final non-negative integer value is then considered to

be the target maximum agent population (PA) for the following period.

Next, the controller calculates the projected unmodified current population for the

coming period (PS). This is calculated as a sum of all agents currently in the simu-

lation, subtracting the number of agents planning on exiting before the next update,

and adding any agents already flagged for exiting during a previous update that have

1forecast.io
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not yet exited (so as not to double-count agents flagged for exiting).

A comparison is then made between PS and PA, so that PDi f f =PS−PA. If PS is found

to be less than PA (PDi f f < 0), the controller starts introducing new agents into the

simulation, equal to the difference between the two. Inversely, if PS is found to be

larger than PA, the controller flags agents for exiting2, equal in number to the differ-

ence between the two. The controller iterates through the list of current agents, in

chronological order, so that older agents are flagged first, until the required number

of agents has been flagged. The code implementation of this process is presented in

detail in section B.2.

7.3.3.2 Agent Movement

Agents in the model have movement capabilities, enabling them to navigate within

space. Two different navigation algorithms have been incorporated in the model,

each serving a specific function: a Randow Walk Algorithm (RW) variant, and a

Shortest Path Algorithm (SPA). In order to run, both of these algorithms require an

abstract structured representation of space as a graph. Given that space is treated

as continuous in 3 dimensions in this model, a navMesh has been implemented to

represent navigable space in graph form (Figures 7.7, 7.8).

The navMesh forms the basis for all path-finding and navigation tasks performed

by the agents in this model. Agents calculate shortest paths to their targets using

the A* path-finding algorithm (Hart et al., 1968) over the navMesh, using Unity’s

implementation (Unity Technologies, 2017). The assumption that any required path

should be the shortest one is derived from observations in relevant literature (Gehl,

1987, Whyte, 1988, Gärling and Gärling, 1988, Jazwinski and Walcheski, 2011,

Bitgood and Dukes, 2006), where it has been noted that in public open spaces, once

a pedestrian has a target location, they will prefer the shortest route.

The navMesh is split into different areas, each area associated with different move-

2Flagging an agent for exit essentially means that in its next activity decision, the agent will start
its exiting process
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Figure 7.7: Area NavMesh

Figure 7.8: Area NavMesh Closeup: Area Overlap

Area Cost
Path 1
Green 2
Water -
Road 5

Table 7.2: NavMesh Area Costs

ment costs. The 4 main area types are (Table 7.2): Paths, are the default walking

areas. These areas have the smallest traversing cost (1), and are thus preferred by

agents. Green areas, lawns, etc. These areas are traversable, at an increased cost

(2). Water includes bodies of water. These areas are non-traversable. Road includes

roads allocated to vehicle traffic, they constitute the least preferred movement areas.
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The Randow Walk Algorithm (RW) variant used in this model is an angular-

constrained random walk. It is used as a heuristic for wandering behaviour in parks.

Given the nature of the spaces considered in this thesis, focussing on parks, the ma-

jority of activities taking place in these areas may be considered leisure activities,

or at the very least not target-based activities (i.e. they do not aim at optimizing

a path to a specific target, such as commuting tasks might be). With this in mind,

it is reasoned that any agents not actively moving towards a specific fixed target

will assume a wandering behaviour, navigating seemingly randomly throughout the

area.

In programmatic sense, the implementation uses a vision cone for the agent, similar

to the RW implementation by Penn and Turner (2001), with the main difference

being the absence of a precalculated visibility graph, instead using synthetic agent

perception for identifying potential destinations at the time. An agent will pick a

new valid location at random within its view distance (Social Distance or more),

and calculate the shortest path using the navMesh to that point. This particular

implementation of wandering behaviour includes a directional angle constraint, so

that the new location must satisfy the parameter that the angle on the horizontal

plane between the agent’s current forward direction vector and the vector from the

agent to the new location is smaller than the agent’s field of view3 (Figures 7.9,

7.10).

In addition to the RW variant, in some instances agent movement is required to

cover large distances. Such instances involve specific features in the area, with a

fixed location, that might be the target of an agent’s action. These include navigating

to an attraction, facility or amenity, or moving to a gate to exit the area. This form of

long-range path-finding again implements the A* SPA, calculating the shortest path

to target location, with the only difference that the target location can be anywhere

in the area (outside the agent’s view range, angle of view, etc) (Figure 7.11).

3Essentially, making sure the new direction is broadly ’in front’ of the agent, thus mostly elimi-
nating backtracking and orbiting the same location
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Figure 7.9: Angular-Constrained Random Walk: The blue arc represents the agent’s field
of view. White circles highlight random target locations outside the agent’s
field of view, the black circle highlights a valid location.

Figure 7.10: Angular-Constrained Random Walk - Resultant Path

Agent movement speed is derived from literature, is set to be 1.5 m/s on average

(Willis et al., 2004, Ishaque and Noland, 2008), and is considered a constant agent

parameter, meaning it stays at the same value throughout the agent’s lifetime. In-

dividual agent speeds are drawn from a normal distribution with a mean of 1.5

and standard deviation of 0.15, with final values constrained between 1 and 2. Al-

though literature suggests that speed is inversely correlated to group size (Gärling

and Gärling, 1988, Willis et al., 2004), and furthermore group size is an agent at-

tribute included in this model (as discussed in the following section, subsubsec-

tion 7.3.3.3), this correlation between group size and group speed has not been
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Figure 7.11: Long Range Path-Finding

implemented in this model.

7.3.3.3 Agent Group Size

Relevant literature notes that people in public spaces are most often encountered

in groups (Costa, 2010, Jazwinski and Walcheski, 2011). Following from these

observations, individual agent entities in this model do not correspond one-to-one

with actual park visitors, but rather represent groups of people, as suggested by

their ’Group Size’ state variable. Groups in the model are assumed to be insepara-

ble, and are therefore represented as a single agent, and furthermore ’Group Size’

is considered to be constant throughout each agent’s lifetime (cannot change dur-

ing the course of the simulation, but can and does vary between different agents).

The ’Group Size’ parameter essentially affects the way an agent is perceived by

other agents when it is being seen and counted by any function: each agent will

be counted a number of times equal to its ’Group Size’ parameter, e.g. when cal-

culating relative densities, an agent with a ’Group Size’ of 3 will count as three

individuals.

Observations from literature state than pairs are the most often encountered group

size. This observation seems to be further verified by a visitor survey at one at the

areas of interest of this work (Ipsos Mori, 2015a), which identified parties of two as

the majority of cases. Taking into consideration these observations, group size for
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the agents is calculated as such: valid group sizes are considered between 1 and 4

people (groups of size 5 and over were a rare occurrence (<0.01), and will not be

considered in the model). Agent group size is calculated at random during agent

initialization, with probabilities as shown in Table 7.3.

Group Size Probability
1 0.42
2 0.488
3 0.046
4 0.046

Table 7.3: Agent Group Size

These probabilities have been derived at based on visitor surveys at Hyde Park, Lon-

don (Ipsos Mori, 2015a), and seem to agree with previous observations. Following

from these probabilities, every 1 agent corresponds to 1.72 visitors. This grouping

reduces computational load, as it reduces the number of individual entities needed

to exist in the model.

7.3.3.4 Agent Interaction Distances

Human socio-spatial behaviour has been identified in literature to vary greatly, de-

pending on the distance between individuals during interaction, or inversely, that

specific distances are obeyed depending on the type of interaction taking place be-

tween two or more people. Multiple different interaction zones have been identified

(Hall, 1966a, Ciolek, 1983, Gehl, 1987), and have been discussed extensively in

Section 2.2.3: Distances in Social Interaction. A summary of these findings is

offered here. Research seems to agree at an upper distance threshold that encom-

passes inter-human interaction, observed to be approximately at 100 meters. The

degree of familiarity and intimacy of interaction appears to be inversely correlated

to interaction distance, with interaction between close friends and acquaintances

taking place within 7.5 to 10 meters. From this it also follows that non-friends

within this distance are generally avoided, i.e. between strangers, such distances

are generally observed to be maintained. Interaction between strangers or in for-
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mal circumstances takes place in distances between 10 and 70 meters, with these

distances including the act of spectating as an interaction. Between distances of 70

and 100 meters, others are acknowledged as people within the same general area.

In the context of this model, these observations have been adopted and simplified in

order to inform the agent behavioural framework concerning rules of engagement

with other agents. The upper limit has been adopted exactly, at 100 meters. At the

other end of the spectrum, the default personal distance threshold has been defined

at 10 meters. The distinction between social interaction and spectating distance has

been dropped, and instead all interactions between 10 and 100 meters are considered

as similar, as the final agent interaction and behaviour framework does not require

this level of fidelity. Personal distance may be considered to be higher, dependent

on agent group size, up to 15 meters. Therefore, overall agent interaction distances

are defined as follows:

• Personal Distance: 0-10 m

• Social Distance: 10-100 m

7.3.3.5 Agent Lifetime

The vast majority of people in public spaces only spend a specific, predetermined

amount of time in any one space, as public space use is considered as ephemeral

space. This is generally true for visits to parks as well, although with the difference

that visits might have a longer duration, as parks are considered as spaces for leisure

activities. Given the above, agents in this model have a predetermined lifetime in

the simulation, calculated at random during agent initialization. The values along

with probabilities for different durations are taken from park visitor surveys, carried

out for one of the areas of interest in this work (Ipsos Mori, 2015a). Overall visit

durations are allocated at random with probabilities as shown in Table 7.4.

Under these durations and probabilities, an average park visit is considered to last

80.7 minutes.
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Agent Lifetime (minutes) Probability
0-30 0.16
30-60 0.24
60-120 0.39
120-180 0.16
180-240 0.04

Table 7.4: Agent Lifetime

7.3.3.6 Agent Activity Duration

The formula used to calculate how long each stationary activity should last takes

into count the following parameters: the duration (in frames/update ticks) of an av-

erage walk action t, the overall probability PS that at any point in time an agent will

be involved in any stationary activity (calculated as the sum of all activity prob-

abilities), and the time DP spent preparing for the next stationary activity. The

consideration behind this calculation was that on average in the model, if the agents

have a probability 0 < x < 1 of engaging in a particular activity, then they will also

spend x percent of their total lifetime engaged in this particular activity (on average

across all agents). The final value for the duration of the stationary activity DS is

expressed as a factor of t, so as to make it applicable over different models:

DS = t ∗mod ∗ c

Where c is a constant and mod is the modifier to be applied to t. Through trial-and-

error, mod was set to

mod =
v1 + v2−1

v1−1

where v1 = 1/PS and v2 = DP/t, and c = 1.5.

7.3.3.7 Agent Activities

The different activities an agent might engage in during their lifetime in the simula-

tion have been presented earlier. They are listed in Table 7.5.

Movement activities implement the Randow Walk Algorithm (RW), as has been
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Activity Activity Type
Walk Movement
Prepare to Sit Precalculation
Sit Stationary
Feature Visit Stationary
Prepare for Sports Precalculation
Sports Stationary
Exit Movement

Table 7.5: Agent Activities

described earlier. Precalculation activities implement the ’Walk’ behaviour at their

core and run additional scanning algorithms during their execution; essentially the

base ’Walk’ behaviour is used in order to allow the scanning algorithms to cover a

larger area/increase the sample size. Stationary activities require a target location to

be specified, and are carried out in two phases: the first phase involves moving to

the target location, and the second phase involves the agent engaging in the activity

with a fixed position in that location, for the duration. The ’Exit’ activity functions

the same way as a ’Feature Visit’ activity, with the exception that when the agent

reaches its destination, it is removed from the simulation, instead of engaging in an

activity.

Activity duration is calculated as a function of the average duration of activities the

agent has participated in so far. Some activities (such as walking) have a duration as

a resultant variable (duration / speed), while others (such as how long a stationary

activity will last) rely on the duration being known beforehand. Agents always start

at a ’Walk’ state, ensuring that the average duration variable is defined. The follow-

ing sections will discuss individual agent activities, and how they are implemented

in the model.

7.3.3.7.1 Walk Agents move around the area using the wandering behaviour dis-

cussed in 7.3.3.2: Agent Movement. This behaviour is considered the default state

of agents, with the highest probability. Once the ’Walk’ has been triggered, the pro-

cess is as follows: The agent picks a random location on the ground, within its field

of view. This location it then examined, to verify whether it is on navigable terrain.
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If not, a new location is chosen at random. If the location is on valid terrain, a path

from current location to target location is requested. If no valid paths exist, the pro-

cess is reset and a new location is chosen at random. If a valid path exists, the length

of the complete path is compared against the straight-line distance between origin

and destination. If path length is found to be longer that 4 times the straight-line

distance, a new location is chosen at random and the process resets. This distance

check is performed to ensure agents are not attempting to navigate around a large

obstacle (e.g. a long narrow river with a single bridge). If the path is valid, the agent

sets it as its current path travels along until it reaches the end of the path, at which

point a new activity is decided.

7.3.3.7.2 Prepare-To-Sit Prepare-To-Sit is a pre-routine, is almost always fol-

lowed by the ’Sit’ activity, and it deploys a scanning behaviour for the optimal

location to sit. Once triggered, it will request a random walking path, as per the

’Walk’ routine. When it completes, the duration for the following sitting activity is

also calculated, using the formula presented in subsubsection 7.3.3.6. The scanning

process ends after a predetermined length of time, expressed as a multiple of the

average walking duration. During this scanning phase, ’Walk’ behaviours are being

triggered until the required time has passed.

The scanning process itself involves a form of agent vision, which is implemented

using collision detection algorithms through a physics engine. The process is il-

lustrated in Figure 7.12. At fixed short intervals (potentially at every update), a

location on the ground is chosen, within the agent’s current field of view. The target

location is verified to be on navigable terrain, otherwise a new location is chosen.

If the location is navigable, a virtual sphere is placed, centered at the target loca-

tion, with a radius of the agent’s social distance (100 m). All physical geometries

of type ’agent’ that overlap the sphere are returned in a list as potential entities of

interest. The length of the list (number of other agents visible from this location) is

considered to be this location’s score. However, if other agents currently engaged

in a sitting activity are found to be within the personal distance (10 m) from target
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Figure 7.12: Agent Prepare-To-Sit Scanning Process. For 3 potential locations A, B, C,
scores are calculated as: A=7, B=2, C=11. C however is discarded, as other
agents would fall within the scanning agent’s personal radius. Therefore po-
sition A is chosen as the winning location.

location, the location is discarded. At the end of the scanning process, the location

with the highest score is considered as the optimal. A path to that location is calcu-

lated, and the agent sets it as its current path. Once the target location is reached, the

agent checks whether it has been flagged for exit, or whether its lifetime has been

completed, in which cases it skips the sitting activity, and starts its ’Exit’ behaviour.

Otherwise, it engages in a sitting activity.

7.3.3.7.3 Sit The agent plants itself at its current location, and changes its state to

’Sitting’. The duration for this sitting activity has been calculated already, as two-

thirds of the overall preparation and actual sitting activity. The agent stays at this

location for the duration, at the end of which an exit check is performed, otherwise

a ’Walk’ activity is triggered.

7.3.3.7.4 Feature-Visit The Feature-Visit sub-process involves the agent visiting

a predetermined fixed location in the area of interest (e.g. a restaurant, an attrac-

tion, etc.). The agent picks one location from a pre-compiled list of points of in-
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terest in the area (if no such features exist in the simulation, this behaviour is not

implemented). Next, a path is calculated to that location, and is set as the current

agent path. Once the agent reaches its destination, it engages in a sitting activity,

by planting itself at the location, and changing its state to ’Sitting’. In a similar

fashion to the sitting activity, activity duration is calculated using the formula in

subsubsection 7.3.3.6, and the time taken to move to the feature is used a the time

spent preparing for the activity. At the end of the sitting activity, an exit check is

performed, otherwise a ’Walk’ activity is triggered.

7.3.3.7.5 Prepare-For-Sports Prepare-For-Sports is a pre-routine, and is almost

always followed by a ’Sports’ activity. It employs a scanning behaviour, similar to

the ’Prepare-To-Sit’ activity, allowing agents to identify potential locations appro-

priate for sports activities. The ’Prepare-For-Sports’ behaviour overlays a ’Walk’

and a scanning behaviour, utilizing agent movement to allow the scanning algo-

rithms to cover a larger area. For the duration of the scanning phase and until

a suitable location has been identified, walk destinations and paths are generated

continuously, allowing the agent to wander throughout the area. Sports activity du-

ration is calculated using the formula in subsubsection 7.3.3.6. In contrast to sitting

and feature-visit activities however, the sports preparation activity only ends once a

suitable location has been found (or if none are found, when the agent exceeds its

lifetime). Therefore, this preparatory routine can last for a significant duration, and

subsequently the sports process that follows it will have a long duration as well.

The scanning process involves a form of agent vision, implemented using collision

detection. The process is illustrated in Figure 7.13. At fixed intervals, a random

location on the ground is chosen, within the agent’s current field of view. The target

location is checked to be on navigable terrain and accessible from the agent’s current

location. If the location is found to be valid, a feature check is performed on the

surrounding area, up to a fixed radius (reflecting the playing field) from the target

location. This check returns all geometry of type ’feature’ (e.g. trees, buildings,

furniture), terrain types ’water’ and ’path’, as well as agents of state ’Sitting’. If



7.3. DETAILS 201

Figure 7.13: Agent Prepare-For-Sports Scanning Process. For 4 potential locations A, B,
C, D: A is discarded as too crowded (3 other agents detected). B is discarded
due to overlap with features. C is discarded due to overlap with path geometry
(a single agent within the area is acceptable). D is a valid area.

none of the above are identified, the location is considered valid. Up to a single

agent of state ’Sitting’ can be detected and the area will still be considered valid.

Agents in movement states are considered valid, as they do not occupy the potential

playing field. Furthermore, agents in a ’Sports’ state are also considered valid.

However, any type of static geometry (features and/or terrain types) will render the

location as invalid. The scanning process is repeated until a valid location is found.

Once such a valid location is found, a path is calculated, the agent sets it as its

destination, and moves towards it. Once the location is reached, the agent performs

an exit check, if it returns false, the agent engages in a sports activity.

7.3.3.7.6 Sports The agent plants itself at its current location, and changes its

state to ’Sports’. The duration sports activity has been calculated already, as the

two-thirds of the overall sports activity (including both the actual activity and the

preparation phase). The agent stays at this location for the duration, at the end of

which an exit check is performed, otherwise a ’Walk’ activity is triggered.
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7.3.3.7.7 Exit An ’Exit’ activity is triggered at the end of the agent’s lifetime,

or when it has been flagged by the controller for exit (to reduce overpopulation).

Similar to the ’Feature-Visit’ activity, the agent picks one target exit location (a gate)

from a pre-compiled list of gates (if no such list exists, the agent is immediately

removed from the simulation). Next, a path is calculated to the destination, and it is

set as the current path. The agent then follows the path, and at the end of which is

removed from the simulation.

7.4 Summary

This chapter presented the ABM of PSU developed in this work, using the revised

version of the Overview, Design concepts, and Details (ODD) paradigm (Grimm

et al., 2010). The overall aim of the model is to estimate user activity in parks

at high temporal fidelity both spatially and temporally. In other words, its main

outcome is a continuous simulation of park visitors capturing individual activities

and their locations in the area of interest at a temporal resolution of one second.

The model consists of three core entity types: A static environment constructed

using 3D mesh geometry, a single task scheduler (the controller) which performs

simulation-wide tasks, such as time-keeping, agent population control, calculating

run-time model performance statistics, and input-output functions, and finally the

agents, synthetic autonomous entities representing park visitors that interact within

the virtual environment based on predefined stochastic rules and conditions of their

local environment.

Agent behaviours and decision trees were further presented in more detail: agents

are introduced into the simulation, perform a continuous behaviour loop using a

stochastic process implementing a Probabilistic Finite-State Machine (PFSM), and

exit the simulation once their allocated lifetime has passed. The behaviour loop

consists of five core behaviours (Walk, Sit, Feature Visit, Sports, and Exit) and two

precalculation activities for two of the core activities (Prepare-for-Sit and Prepare-
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for-Sports). Agent initialisation variables (including speed, group size, lifetime, and

interaction distance) are drawn at random from pre-set value bins using fixed prob-

abilities, as defined through relevant literature. Agent movement is implemented

using two distinct algorithms: an angular-constrained random walk to simulate wan-

dering behaviour, and a shortest-path using the A* algorithm to handle navigation

to fixed locations. Agent vision was implemented using collision detection through

the use of a physics engine. Finally, agent interaction was implemented in a form of

scavenging behaviour for specific activities (specifically Sit and Sports activities),

in which individual agents planning on engaging in such activities would sample lo-

cations in their vicinity, looking for the optimal location for each activity as defined

by the presence of other agents.

For clarity, discussion focussed on the technical aspects of model implementation

and was presented using a sample area. The following part (Part III) will demon-

strate model applicability by presenting the application of the model to two case

studies of real-world locations, focussing on model calibration and evaluation, and

will furthermore present methods for coupling the ABM of PSU with Real-Time

Data (RTD), in order to develop Agent-Based Models of Public Space Activity in

Real-Time.
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Chapter 8

Case Study 1 - Hyde Park

This Chapter will discuss the first case study carried out in this thesis, Case Study

1: Hyde Park (CS1:HyP), which focusses on Hyde Park (HyP) in London, United

Kingdom. It will cover aims and objectives of the study, datasets used, both regard-

ing their collection and analysis, the development and calibration of the two sub-

models discussed previously, specifically a forecasting model of aggregate visitor

activity, and a Spatial Disaggregation Model (SDM) of individual visitor activity,

along with an evaluation of the overall process.

The chapter begins with an introductory section (Section 8.1), highlighting the aims

and objectives as set out at the beginning of the case study. Furthermore, it intro-

duces the area of interest, identified as Hyde Park, discusses the reasons why this

area was chosen, and highlights its advantages as a candidate area for the first case

study.

The following section (Section 8.2) focusses on datasets used in this study, which

include both remotely captured Real-Time Data (RTD) and ground truth data. It dis-

cusses the various methods used for capturing relevant data and presents some ini-

tial findings and limitations regarding datasets used. The section is divided into two

subsections, one focussing on RTD routinely collected using collector programs,

the other on data regarding individual visitor activity in the park, collected via site

surveys conducted at various times and dates during site visits.
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Following that, in Section 8.3 a discussion on the development of the forecast sub-

model is offered. This section discusses how RTD was used to calibrate the ag-

gregate activity forecast model, allowing for continuous short-term predictions of

overall activity in the park, using weather and social media data.

Next, Section 8.4 presents an extended discussion on the development of the SDM

used to simulate individual visitor activity in the park. It focusses on the application

of the public space use Agent-Based Model (ABM) presented in Chapter 7 on HyP,

and covers the generation of the virtual environment, agent calibration, and output.

The second-to-last section (Section 8.4) offers a discussion on the evaluation of this

first case study, both on the overall implementation and on individual components.

Finally, the chapter concludes with a short summary, highlighting any particular

limitations of the case study, and extracting any valuable findings.

8.1 Aims and Overview

The overall aim of this case study was to bring together all of the conceptual real-

time simulation methodologies discussed in the previous chapters, and furthermore

apply them to a real-world scenario, in order to test the validity of the overall model.

This overarching aim was approached through a series of specific objectives, which

helped to frame and guide the case study. The specific objectives this first case study

set out to achieve were the following:

1. Identification of relevant data sources. Data source relevance was judged

on how well a dataset captured Public Space Activity (PSA), its Real-Time

(RT) characteristics, and its reliability and accessibility. The following data

sources were ultimately used: Social Media (SocM) micro-blogging and

photo-sharing platforms Twitter and Instagram were used as a proxy of visitor

activity by capturing geotagged posts, weather forecast data from forecast.io

(as an independent variable affecting visitor activity), and visitor activities

with locations on specific days which formed the ground truth data.
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2. Development of appropriate data capturing methodologies. Automated

collection scripts were written in the Python programming language which

collected SocM and weather data through web Application Programming In-

terfaces (APIs) every day. A similar methodology could be applied at a finer

temporal resolution (e.g. 15 minutes or less), in order to have more recent,

i.e. Real-Time information. Ground truth data was collected via surveys con-

ducted during site visits.

3. Development of a PSA forecast model, capable of performing in RT, and

subsequent calibration of the model using available data sources. A pre-

dictive model of total visitor activity was developed, as presented in a pre-

vious chapter (Section 5.2), and calibrated using SocM and weather data to

continuously provide forecasts for visitor activity in HyP at 15 minute inter-

vals.

4. Development of a SDM using the ABM paradigm, to simulate individual

visitor activity in the area of interest, capable of performing in RT. Sub-

sequent calibration of SDM parameters. An ABM was implemented to

capture individual visitor activity in HyP, following the framework presented

in Chapter 7. It was calibrated using data on individual visitors’ activities,

gathered through site visits.

5. Evaluation of the overall RT model, as well as sub-models. The forecast

sub-model was validated against an independent subset of the collected data.

Regarding the SDM, initial aims were to validate distribution of activities

against an independent, real-time dataset, the geolocated SocM events. How-

ever, due to changes in SocM sources’ handling of geolocation, this proved

impossible, and ultimately the SDM was not validated against an independent

dataset in this first case study.

A further, secondary aim of this first case study was to investigate the extent to

which all other objectives could be achieved using solely publicly available datasets.
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This restriction on data sources was established for two reasons: First, as an exercise

and investigation into the extent to which public life is captured in datasets which

are publicly available; in other words, whether physical public life is adequately

mirrored in its traces in digital public life. Second, as a safeguard, in order to

not restrict method application to exclusive datasets. This second reason was even

more important given that this was the first case study undertaken and therefore

method validity had not been established yet: this work needed to ensure that any

methodologies developed in this work could (at least in theory) be applied to other

areas as well as long as similar data sources were available for the other target areas,

and it was decided that the best approach for this would be to only employ publicly

available datasets.

Figure 8.1: Hyde Park Case Study Area Boundaries

About the area of interest: Hyde Park (HyP) is a metropolitan park, west of Central

London, UK, maintained by the Royal Parks. It connects to the west with Kensing-

ton Gardens, also a park maintained by the Royal Parks, and together they form a

large open area of London and of vital importance for green spaces. For this study,

only HyP will be examined, for a number of reasons. First of all, it is of a roughly

rectangular shape, with a side of over 1 km for a total area of approximately 127 ha,
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with enough variation in landscape and features to host a large number of hetero-

geneous activities. Therefore its area is more than adequate in capturing potential

variations in activity. Secondly, the park is surrounded by four carriageways, one on

each side, with no vehicular traffic allowed within the park. These characteristics

provide a well-defined set of properties for the purposes of this study, as the defined

borders allow for a straightforward classification of visitors as being in the area, and

furthermore the absence of motor traffic allows for a mostly uninterrupted study on

human activity in public spaces, as visitors are free to move and use the entirety of

the space. A final advantage of this location is its open-air characteristic, as HyP has

very few structures or other tall features, which makes geolocation services easier

to use (i.e. stable signal for GPS-enabled devices).

8.2 Data Sources and Analysis

Presentation of data used for this study, data sources, analysis and results.

8.2.1 Real-Time Datasets

As discussed in previous chapters (chapter 6), this work focusses on Real-Time

simulation of activity in public spaces, and as such is concerned with datasets that

capture park visitor/user activity in Real-Time, i.e. as it happens. Furthermore, as

discussed in chapter 5, it aims to be continuously forecasting future activity in the

short term, and therefore the majority of the datasets examined were considered due

to their potential on constantly capturing and predicting activity in public spaces.

This section will discuss all the datasets that were considered for capturing and/or

forecasting park visitor activity in the first case study on Hyde Park.

The initial approach considered the use of data on transportation passenger jour-

neys, with the aim to build a Visitor Supply Forecast Model, as discussed in sub-

section 5.2.1. The central idea was to make use of TfL’s API on live train and tube

arrivals, coupled with data on passenger exits at stations, develop a predictive model
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that would continuously forecast the number of passengers exiting at each station

around Hyde Park, and potentially extend to other modes of transport (e.g. buses),

in order to have an estimate of new people arriving in the general area. However, as

was stated in subsubsection 6.4.2.3, due to lack of real time datasets on passenger

volumes and exits, the forecasts lacked any meaningful variation when disaggre-

gated to quarter-hour resolution, as was demonstrated in Figure 6.24: 15-minute

predictions for different days throughout the year resulted in only small offsets of

the same daily curve. In addition to poor results, there was an issue regarding data

availability: Although data retrieved via TfL’s API can be considered publicly avail-

able, information regarding passengers and Oyster Cards is not publicly available.

Therefore, if this approach had been enhanced with Oyster card data for more mean-

ingful analysis, it would have invalidated the secondary aim of this case study, to

attempt to simulate public space activity using only publicly available data. Due to

the reasons discussed here, transport data was ultimately not used in this case study.

Figure 6.24: Passenger Exits at Station - Period Average (repeated from page 172)
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8.2.1.1 Social Media Datasets

The second approach considered the use of Social Media (SocM) datasets, to be

used as a proxy for real-time activity in public spaces. Specifically, 3 different plat-

forms were considered: the social networking and micro-blogging service Twitter,

the photo-sharing application Instagram, and the social networking service Face-

book. All of the above platforms provide content to their users in a continuous,

streaming fashion, and all three provide developers access via an API. Through

their APIs, new content can be retrieved as it becomes available, i.e. in Real-Time,

and further filtered via geolocation tags, to only include data from specific loca-

tions. Initial thoughts for the SocM approach considered the use of Instagram and

Twitter feeds as proxies of actual activity on the ground, and Facebook to collect

future planned events for anticipating and forecasting future activity volume. Of the

three, Instagram and Twitter were used for the whole of the case study, Facebook

was dropped from the list of potential datasets due to unreliability issues, as will be

discussed in the following paragraphs.

SocM post collection for Twitter and Instagram was performed using automated

scripts written in the Python programming language, as discussed in section 6.1.

The scripts were set to run every day at 15 minutes past midnight, and queried social

media services’ APIs for geolocated posts originating in the area of interest, which

were published any time during the previous day. A detailed presentation of actual

code used is offered in Appendix A.3. The datasets were stored as daily records

sorted chronologically using each individual post’s timestamp in UNIX time. Al-

though collection was performed once daily, the same approach and code can be

used with shorter query windows, to collect e.g. posts published in the past hour,

half-hour, or any other duration. As explained further in section 6.1, Instagram

collection stopped on June 1st 2016, due to fundamental changes in the service’s

Terms and Conditions. For this reason, May 31st 2016 marked the end of the data

collection period, as the remaining service (Twitter) could not compensate for the

volume of data that was now missing. A time series plot of daily totals from the two
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services for the duration of the case study (September 14th 2015 to May 31st 2016)

is presented in Figure 8.3 (Daily zero values were due to collection failure).

Figure 8.3: HyP SocM Daily Totals. Background vertical lines mark Sundays.

Planned events in the area were collected in a similar manner, using a script to

access Facebook’s API to retrieve planned events and number of attendees. The

script used is presented in Appendix A.3. The script ran for a short duration as a

pilot, from the beginning of data collection (September 14th 2015) until January

31st 2016. Data collected is presented in Figure 8.4, along with SocM daily sums

from the two sources (Daily zero values in SocM were due to collection failure).

The Instagram feed consistently returns many more results, by a factor of 10 on

average, compared to Twitter. This might be due to Twitter users not enabling

location services as much as instagram users, and/or due to variance in platform

usage in the park (Instagram’s focus on visual information i.e. photos might be more

favourable in a park than Twitter’s text-based platform). Regardless of the resulting

volumes, one thing to note is that both sources seem to exhibit the same peaks, and

are generally consistent with one another. Finally, it is due to this difference in data

volumes that the case study could not continue after Instagram data could not be

retrieved any longer, as it constituted approximately 90% of all data.

The large block of increased SocM activity beginning on November 20th and end-
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Figure 8.4: HyP SocM Daily Totals with Planned Events

ing on January 4th is due to an annual winter festival taking place on Hyde Park

grounds, the Winter Wonderland. As expected, it consistently drew large numbers

of visitors. The fact that the event was somewhat accurately reflected in Facebook

planned events provided some initial support to the idea of using the Facebook

API for using events as indicators of increased activity. However, the Facebook

ecosystem imposed some further limitations regarding disaggregating the datasets.

Although the event duration was captured adequately, attendees were only marked

as attending the event once, without further information on date and time, which

meant that the total number of attendees was averaged out across 6 weeks.

Further issues were identified with the Facebook API, specifically regarding meta-

data and query results. This is highlighted in Figure 8.4 in red, on October 11th

2015. On that day, a half marathon run was organized starting at Hyde Park,

which as expected drew a large crowd, however this was not reflected in Facebook’s

planned events. Further research identified the issue in the event being advertised

on Facebook through a page type, rather than event type, which meant that it was

not captured by the search terms. Although it is possible that this particular event

might have been advertised previously as event type and subsequently removed,

this instance highlighted a degree of ’messiness’ in the Facebook ecosystem. This,
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along with the fact that the API implemented frequent changes (the code used here

stopped working soon after it was last run), made Facebook an unreliable source for

real-time collection and forecasting.

Figure 8.5: SocM Collection Valid Dates

A time series overview of SocM data collection for this first case study is presented

in Figure 8.5. Overall, data collection covered a period of 261 days. Of these,

automated collection scripts failed to run on 49 dates, and those dates were re-

moved from the dataset. Furthermore, it was decided that increased activity during

the ’Winter Wonderland’ festival, spanning 46 days, would be treated as an ex-

treme outlier, and was therefore discarded from the datasets. After removing these

data points, the remaining dataset containing valid dates consisted of 169 days. Of

these, 29 days (17.15% of total valid dates) containing all valid dates in the month

of March 2016 were removed from the dataset and kept separately for validation

purposes. The remaining 140 days, constituting 82.84% of total valid dates, were

used to calibrate the Forecast Model discussed in section 8.3. A summary of the

above statistics is offered in Table 8.1.

Having established the valid dates, the SocM dataset was temporally disaggregated

to shorter durations, to be used in real-time forecasting. A duration of 15 minutes

was chosen as the temporal resolution, for two reasons. First, at the onset of this

case study it was assumed that transport passenger data would be used as well,

which as discussed earlier was offered at 15-minute intervals, and so a similar time
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Days Percentage
Total Dates 261 100.00
Known Outliers 46 17.62
Collection Failure 49 18.77

Valid Dates 169 100.00
Validation Data 29 17.16
Calibration Data 140 82.84

Table 8.1: SocM Data Collection Dates Summary

step was chosen for the SocM datasets, to allow for compatibility. Second, this value

was considered as a good compromise between fidelity and meaningfulness, as it

provided a duration long enough to carry substantial information on park activity,

while at the same time it was short enough that it would capture variance throughout

the day. 15-minute disaggregated values for a single day are presented in Figure 8.6

(black line).

Figure 8.6: SocM Quarter Hour Counts for a sample day (27/10/2015). Quarter-hour val-
ues are calculated both in raw values as a simple count (black line), as well as
smoothed values as a moving sum (red line)

It is evident from the graph that quarter-hour intervals capture the overall daily

variation in adequate detail, with a steady rise in activity in the morning hours,

peaking in the afternoon hours, followed by a steady decline into the evening and

night. However, there is significant variance between time steps, as is evident by

the sharp spikes in the graph. A smoothing function was applied to the full valid
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dataset, in order to ease variation. The smoothing function employed a backwards

’moving sum’ method, originating from a time step and moving backwards towards

past time steps. The backwards moving sum was chosen in this case, rather than

a rolling average often seen in time series analysis, due to the real-time nature of

this work: At each point in time, the latest point for which data is available is at

best the current point, i.e. no data about the near-future is available. Therefore, two

options are available at this point, either averaging all points in timespan d centered

at the point located at d/2, and therefore working with a time-delay of d/2 to real-

world time, or summing all points in timespan d ending on the most recent point at

’now’. The second option was chosen in this case, as it was of importance to not

compromise the real-time nature of this work. The moving window duration was

set at 90 minutes, 6 times the dataset’s time step, for two reasons: First, the average

visit to Hyde Park has been observed to be approximately 80.7 minutes (Ipsos Mori,

2015a), and therefore a 90-minute window captures a typical visit, erring on the side

of caution. Second, site surveys conducted at Hyde Park capturing visitor activity

lasted just over 90 minutes on average (discussed in the next section) and were

assumed to capture a still snapshot of park activity, and therefore maintaining a

similar window on other data capturing approaches allows for the same assumption

to apply as well: Essentially, a record of a SocM event signals the start of a new

user’s visit, which will last approximately 90 minutes, and therefore all visitors

that arrived up to 90 minutes ago are considered to still be active in the area and

contributing to current overall activity. As such, for each quarter-hour point, the

final summed value of the past 6 quarter-hour counts was used as the current park

visitor total.

8.2.1.2 Weather Data

Similar to Social Media data, information on weather conditions at Hyde Park was

also collected at a high temporal resolution. This information was collected using

the web API service ’darksky.net’ (previously ’forecast.io), via an automated script

written in the Python programming language. The code used is included in Ap-
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pendix A.4, and was set to automatically make a request every day at midnight,

capturing weather conditions for the previous day. As discussed in previous chap-

ters (section 6.1), this API allows users to query weather conditions at a specific

location on a specific date and time, returning either archived past data or forecast

future data, and the response includes a wide range of environmental and weather

parameters, at multiple temporal resolutions1. Data returned by the forecast.io API

included daily and hourly resolutions. A subset of parameters considered relevant

to park activity were extracted form the response and stored in daily JSON records.

The extracted parameters were temperature, cloud coverage, wind speed, precipi-

tation probability, and precipitation intensity, with measurement units presented in

Table 6.2.

Parameter Abbreviation Unit
Hour hr #
Temperature temp C◦

Minimum Daily Temperature maxTemp C◦

Maximum Daily Temperature minTemp C◦

Precipitation Probability precP percentage (0-1 range)
Precipitation Intensity precInt inch/hour

Cloud Coverage cCov
percentage of sky occluded
by clouds (0-1 range)

Wind Speed wndSpd mph

Table 8.2: Weather Parameters (repeated from page 153)

Figure 8.7: Quarter Hour Weather Counts for a sample day (27/10/2015).

1For a comprehensive list, see the darksky.net documentation: https://darksky.net/dev/docs/time-
machine
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The finest resolution offered by this service was at hourly blocks, and these values

were assumed to apply for the whole hour. This resolution captures significant

variation throughout the day, as can be seen in Figure 8.7. After collection, weather

data was disaggregated to 15-minute intervals, and collated with the SocM data

collected, after removing days where SocM collection had failed. The final quarter-

hour weather conditions were used in the Forecast Model discussed in section 8.3

as the independent variables, in order to predict quarter-hour SocM values.

8.2.2 Activity Site Surveys

Actual visitor activity data was collected during four site visits, with the specific

goal of recording the locations and activities of actual visitors at the park, so as

to have baseline ’ground truth’ information on activity throughout the park. The

method used for recording visitor activity on-site has been presented in detail in a

previous chapter (Section 6.3), however a brief summary will be offered here.

The site surveys were conducted using a fieldwork application for mobile devices,

which records the GPS location of the mobile device along with other relevant data

(date, time, etc., as well as customized data options) when the user presses a button

in the application interface. Using the app, the surveyor walked along a predeter-

mined path, triggering a new record in the app every time they encountered a park

visitor within a certain radius (approximately 100 meters). While planning the path,

an attempt was made to strike a balance between area coverage and traversal dura-

tion, so that walking along the path covered as much of the area as possible within

a reasonable time. Due to the design of the fieldwork app itself, where a new event

records the device’s (i.e. surveyor’s) exact location instead of the location of the

park visitor being recorded, the datasets were subsequently imported into GIS soft-

ware, and data points were given new positions, calculated to be within 100 meters

of their recorded location. These redistributed locations were then used as the final

working locations.

The four surveys took place on different days in October 2015. The dates were
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divided into two pairs, so that each pair contained dates on the same week, and so

that each pair contained one weekday and one weekend day, specifically Sunday.

Therefore, two Sundays and two weekdays were covered in total, and furthermore

the two survey date pairs happened a week apart. Finally, all surveys took place at

approximately the same time of day, in early to mid afternoon. A survey summary

is presented in Table 8.3.

Set Date Day Start Time End Time Duration
(mins)

Total Visitor
Count

1
02/10/2015 Friday 13:11:40 14:49:26 97 2687
04/10/2015 Sunday 14:04:54 15:42:33 97 5424

2
11/10/2015 Sunday 14:13:57 15:58:11 104 4340
14/10/2015 Wednesday 13:13:01 14:39:26 86 1662

Table 8.3: HYP Site Survey Summary

As can be seen in the summary, there is a definite tendency for an increase in visitors

on Sundays, with larger visitor numbers in weekends compared to weekdays. This

is expected, as more people would visit the park for leisure activities on a week-

end day, however it is interesting to note the scale of increase, as visitor numbers

more than double on weekends. In addition to recording total visitor numbers, park

user activities were captured in two categories, moving or stationary activities. A

summary of user activities can be seen in Table 8.4. A note on capturing moving

visitors: As was explained in section 6.3, only visitors that crossed paths with the

surveyor were captured (i.e. walking in opposite directions), and therefore it was

assumed that approximately half of the moving visitors were recorded. This value is

represented in column ’Walking Counted’, in column ’Walking Estimated’ the value

is doubled and used as final estimate. There appears to be a semi-fixed relationship

between moving and stationary park users, with the numbers being roughly simi-

lar and a ratio (sitting/walking) of approximately 1. Furthermore, S/W ratio seems

to be higher on Sundays compared to weekdays, although this might be explained

through the analysis of the spatial distribution of activities that follows.

Considering the spatial distribution of activity throughout the park, the following

figures demonstrate the workflow necessary to produce the final dispersed activity
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Set Date Day Total Visitor
Count

Sitting
Counted

Walking
Counted

Walking
Estimated

Sitting
Percentage

1
02/10/2015 Friday 2687 1693 994 1988 45.99%
04/10/2015 Sunday 5424 3904 1520 3040 56.22%

2
11/10/2015 Sunday 4340 3082 1258 2516 55.06%
14/10/2015 Wednesday 1662 1150 512 1024 52.90%

Table 8.4: HYP Site Survey Visitor Statistics

maps. Figure 8.8 shows the survey paths, along with area coverage buffers. Of the

two large undocumented areas (as seen in images 8.8b, 8.8c, and 8.8d), the one in

the north-west quadrant of the park is covered in meadows and clumps of trees in

addition to containing two large walled-off areas (the Royal Parks Nursery, and the

Ranger’s Lodge and Old Police House), while the strip in the east side comprises

of large open lawns. Activity in both these areas was found to be similar to the

surveyed areas around them (little to no activity in the meadow, small-to-fair amount

of activity consistently evenly distributed throughout the lawns). Figure 8.9 shows

the final locations of activities, after points were repositioned within the 100m buffer

area. Activity heatmaps of the finalized locations are shown in Figure 8.10.

The heatmaps were generated using a straightforward feature count for each cell,

with query distance set at 100 meters, as identified in literature to be the upper

distance limit in human interaction (Hall, 1966a, Ciolek, 1983, Gehl, 1987). The

heatmaps represent crowd densities measured as people per 3.14 hectares (due to

the 100m radius), and may be further interpreted as mapping the ’perceived vitality’

at each cell. For Hyde Park, a number of interesting points in terms of recorded

activity have been identified, and their locations have been highlighted in green in

image 8.10a.

Location 1, found at the north-east corner of the park, near the entrance gate and

lawns, is consistently showing some activity in all surveys. However, it is evident

that it becomes a significant hotspot of activity on Sundays. This is due to the

fact that the Speakers’ Corner is located there, an area used by members of the

public for public speaking, debates, and discussions. Although the Corner is open

to everyone anytime during park operation hours, orators at the Corner tend to draw
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(a) Set 1 Weekday (b) Set 1 Sunday

(c) Set 2 Weekday (d) Set 2 Sunday

Figure 8.8: Hyde Park Site Surveys Paths. The images are arranged by set in rows, by day
type in columns (weekdays in column 1, Sundays in column 2). The survey
path is shown in red points. Yellow points mark the locations of individual
records. The red offset around the path highlights the surveyed area (100 meters
around the path).

large crowds on Sundays, as is evident in the heatmaps, which might further explain

why stationary activities are relatively increased on Sundays. In addition to the

Speakers’ Corner, the north-east area opens into the expansive lawns which tend

to have groups of people sitting, and furthermore the Marble Arch Tube station is

located right outside the north-east corner of Hyde Park. As such, activity in this

location is consistently above average at least.

Location 2 marks the south-east end of the body of water known as The Serpen-

tine. The waterfront at this location along with the area immediately to the east

are consistently shown to be the largest hotspot of activity in the park, across all

four surveys. Multiple potential reasons for this increased activity have been iden-



224 CHAPTER 8. CASE STUDY 1 - HYDE PARK

(a) Set 1 Weekday (b) Set 1 Sunday

(c) Set 2 Weekday (d) Set 2 Sunday

Figure 8.9: Hyde Park Site Survey Point Recalculation. Yellow points mark the recorded
locations, blue points mark the recalculated locations.

tified. First, the Serpentine runs uninterrupted through most of Hyde Park, dividing

it into two parts, and location 2 is the westernmost point at which Hyde Park can

be traversed north to south. Therefore, it constitutes a natural bottleneck regarding

visitor flows, which adds to the perceived crowdedness. Second, a restaurant with

plenty of outdoor seating operates at this location, which significantly adds to the

observed stationary activities. These two factors combined might help explain the

consistently high observed activity at this location.

Location 3 is found in the south-west of the park, on the south waterfront of the

Serpentine. It appears as a low to medium intensity hotspot in most surveys (8.10a,

8.10b, 8.10d). Two features are found here that seem to attract activity, one being a

medium-size cafe with outdoor seating on the waterfront, the other being the Diana

Memorial Fountain, a large landscaped water feature with informal seating areas
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(a) Set 1 Weekday (b) Set 1 Sunday

(c) Set 2 Weekday (d) Set 2 Sunday

Figure 8.10: Hyde Park Site Survey Activity Heatmaps.

and a lawn. Both of these features appear to consistently attract seating activities,

and they may be potentially supporting one another, with visitors moving between

the two.

Location 4 constitutes the waterfront of the Serpentine, which has consistently been

observed to gather medium intensity activity along its paths. The paths have been

designed as a promenade around the Serpentine, which along with it being the only

large body of water might explain its attractiveness for walks around the water.
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8.3 Forecast Model

The previous section presented all relevant data that has been collected for this case

study. It highlighted issues with some of the datasets, and explained the various rea-

sons why some potential datasets were eventually dropped from the case study. This

section will present how these datasets were used to form and calibrate a Real-Time

Public Space Activity Forecast Model for Hyde Park, so that total visitor volumes

could be continuously estimated. As was explained in section 5.2: Forecast Sub-

model, from the two forecasting approaches considered (subsection 5.2.1: Visitor

Supply Approach and subsection 5.2.2: Total Visitor Volume Approach), only the

Total Visitor Volume Approach proved to be viable. The rest of this chapter will

continue with the implementation of this approach.

Some initial observations have already been made regarding apparent relationships

between SocM and weather and temporal conditions, which will be used as the start-

ing point for the rest of this section. Section 6.1 established that some correlation

exists between SocM and weather/temporal conditions, at multiple temporal reso-

lutions. At a daily level, it has been shown (Figures 6.8a, 6.8b) that SocM shows

little to no correlation with temperature variation; however daily temperature range

seems to correlate with SocM variance ( 6.8c), thus hinting at other environmental

factors having an effect on SocM activity (Easterling et al., 1997). Precipitation

probability and intensity do exhibit some relationship to SocM (Figures 6.8d, 6.8e),

although not any particular linear correlation. Finally, cloud coverage and wind

speed both indicate a negative linear correlation with SocM (Figures 6.8f, 6.8g). At

hourly level, scatter plots of SocM against environmental conditions show a posi-

tive correlation within individual days but no overall pattern over the whole dataset,

as can be seen in Figure 8.11 (Other weather conditions provided similar results).

However, at this temporal resolution, it appears that time-of-day is a major driving

factor, as can be seen in Figure 6.11.

Given the above observations, it is assumed that some relationship exists between

weather and temporal parameters and SocM activity, and it is further hypothesized
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Figure 8.11: SOCM vs. Temperature -
Hourly Figure 6.11: SOCM vs. Hour (repeated from

page 158)

that SocM activity correlates with actual activity. The aggregate activity forecast

model will be built around these two hypotheses.

8.3.1 Model Formulation

The abstract forecast model of current activity from subsection 5.2.2: Total Visitor

Volume Approach has been defined as

Pt = Tt ∗Wt ∗ p+At + e

where Pt is the total population of park visitors active in the area at time t, Tt and

Wt are time and weather modifiers respectively at time t, p is a population coeffi-

cient, At stands for any special attractors in the area at time t, and e is a constant.

At was considered to be set using planned events at the park, captured using Face-

book’s API. As that data source was dropped from this case study, the At term was

also removed from the formula, as there was no reliable way to capture events and

attractions. Therefore the overall forecast model is now defined as

Pt = (Tt ∗Wt)∗ p+ e
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Furthermore, given the observed relationship between SocM and weather/temporal

conditions, it is assumed that a secondary model exists, where at time t, SocM

events SocMt can be estimated as a function of weather and temporal parameters,

so that

SocMt = Tt ∗Wt

and therefore

Pt = p∗SocMt + e

Data is available for SocM and visitor population during the survey periods, by

counting all SocM events originating from Hyde Park in the duration of a survey,

and a summary can be seen in Table 8.5. Set 2 Sunday shows an exceptionally high

SocM count compared to the other three survey dates. This is due to a sports event

(half marathon) that took place on that day before the site survey, and was evidently

discussed in social media. Disregarding this value, the remaining three seem to be

consistent at under 50 people per SocM event.

Set Date Day Total Visitor Count SocM Ratio (V/S)

1
02/10/2015 Friday 2687 64 41.984
04/10/2015 Sunday 5424 109 49.761

2
11/10/2015 Sunday 4340 241 18.008
14/10/2015 Wednesday 1662 33 50.363

Table 8.5: Site Survey - SocM Summary

Using the information above, it is possible to calculate p and e values for the forecast

model. As can be seen in Figure 8.13a, a positive linear relationship exists between

actual visitor activity and SocM activity. Running a linear regression for visitor

population by SocM, as shown in Figure 8.13b, results in the equation V = 50.31∗

S−197.2, and therefore p = 50.31, and e =−197.2.

Having established a connection between SocM and visitor numbers, the next step

requires the equation connecting SocM and weather and temporal parameters to be
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(a) Socm - Visitor Population (b) Visitor Population - SocM

Figure 8.13: Visitor Population - SocM Correlation

identified and defined. In its abstract form it has been defined as

SocMt = Tt ∗Wt

so that at any time t, the total number of SocM events in the park can be calculated

as a function of weather conditions and time. This SocM-Weather/Time model

essentially establishes the real-time nature and forecasting capabilities of the overall

model, as it ties SocM activity first to weather conditions, which can be reliably

forecast for short periods in the near-future, and second to time, which is a known

variable. It was decided that some form of a multiple linear regression model would

be most suitable for this model, using various weather and temporal parameters as

the independent variables, and SocM as the dependent variable.

8.3.2 Model Calibration

For the calibration of the multiple linear regression model, the SocM-weather data

was used, which as discussed earlier was disaggregated to 15 minute intervals, and

SocM records were summed for the past 6 time steps. The aim of the calibration

was first to identify the form of the linear model, identifying dominant independent

variables and their relationships, and second to set the model coefficients. For this

purpose, multiple iterations of linear regressions were implemented using different



230 CHAPTER 8. CASE STUDY 1 - HYDE PARK

combinations of the independent variables, and the adjusted R-squared values were

compared between implementations to determine goodness of fit.

Some initial considerations were made regarding some of the dataset’s properties,

specifically the different day types. There is significant variation in daily SocM

totals between different day types, most obvious between Sundays and weekdays.

Originally the aim was to include day type as an additional variable in the linear

model. However, as has been observed already, time of day appears to be the dom-

inant variable that drives SocM changes throughout the day. If day type was to

be included as an additional variable, this would assume that the activity trendline

throughout the day would follow a similar curve between Sundays and weekdays

(peaking at the same times, etc.). To avoid including this assumption in the model, it

was decided to split the dataset for different day types using five categories: ’Week’

(all seven days of the week as one category), ’Weekdays’ (Mondays-Fridays as

one category), ’Weekends’ (Saturdays-Sundays as one category), ’Saturdays’, and

’Sundays’, and identify the most applicable classification through the calibration

process.

Furthermore, it has been established that for smaller time steps (less than an hour),

SocM activity throughout the day is best approximated using a polynomial function

of time. For the calibration process, polynomials at multiple degrees were consid-

ered for different implementations, specifically 3rd, 4th, and 5th degree polynomi-

als, in order to identify the most applicable. These were further combined with

weather parameters in order to test best fit. Calibration runs were performed in

stages, at each stage refining the parameter set. First the polynomial degree was

established, second different weather parameters were examined for best fit, third

variable combination mode was tested (additive or multiplicative) , and fourth the

combination of multiple weather parameters was examined. For each run, the ad-

justed R squared values were recorded, and later compared between runs to deter-

mine best model fits. A summary of fit statistics is presented in Table 8.6.

As can be seen both in the table as well as in Figure 8.14, 5th degree polynomial
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Model Week Weekdays Weekends Saturdays Sundays
SocM : hr3 0.5162 0.5719 0.5754 0.5583 0.6397
SocM : hr4 0.5180 0.5740 0.5772 0.5625 0.6403
SocM : hr5 0.5204 0.5743 0.5872 0.5744 0.6497

SocM : hr5 + temp 0.5282 0.5893 0.5875 0.5772 0.6496
SocM : hr5 + cCov 0.5380 0.5874 0.6167 0.6018 0.6870
SocM : hr5 + wndSpd 0.5377 0.5902 0.6132 0.6125 0.6752
SocM : hr5 + precP 0.5317 0.5792 0.6106 0.5997 0.6580
SocM : hr5 + precInt 0.5288 0.5790 0.6010 0.5870 0.6567

SocM : hr5 * temp 0.5301 0.5928 0.5884 0.5770 0.6519
SocM : hr5 * cCov 0.5542 0.5998 0.6445 0.6361 0.7206
SocM : hr5 * wndSpd 0.5445 0.5948 0.6281 0.6280 0.6929
SocM : hr5 * precP 0.5427 0.5841 0.6365 0.6312 0.6675
SocM : hr5 * precInt 0.5393 0.5850 0.6329 0.6279 0.6696

SocM : hr5 * cCov * temp 0.5606 0.6145 0.6502 0.6376 0.7283
SocM : hr5 * cCov * wndSpd 0.5680 0.6154 0.6565 0.6538 0.7391
SocM : hr5 * cCov * precP 0.5671 0.6060 0.6703 0.6497 0.7505
SocM : hr5 * cCov * precInt 0.5661 0.6079 0.6707 0.6498 0.7543

Table 8.6: Adjusted R2 for SocM - Time/Weather Linear Model by Coefficient. Model best
fits for each calibration stage and day type are highlighted in bold.

curves presented the best fit. Regarding weather parameters, it appears that best

results were generated by using either cloud coverage or wind speed as a param-

eter, depending on day type classification. However, multiplicative combination

of terms resulted in significantly increased results using cloud coverage as the sin-

gle weather parameter. Finally, although adding additional weather parameters as

variables increased R2 scores, weather parameters other than wind speed seemed to

have a greater effect.

Ultimately, it was decided that a smaller parameter set was preferable to increased

scores, and therefore 5th degree polynomials combined with cloud coverage were

chosen as the most applicable model fit. Regarding day type classification, it was

decided that three different classes would be used: Weekdays, Saturdays, and Sun-

days. As can be seen in Figure 8.15, a single class for the whole week provided

the poorest results, and therefore splitting into multiple cases was required. Given

similar values between Saturdays and Weekends, it was decided that splitting the
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Figure 8.14: Polynomial Degree Curve Fit Comparison

Weekend class further into Saturdays and Sundays was required, as it seems that

the two day types exhibit different activity patterns.

Figure 8.15: Adjusted R2 by Coefficient and Day Type

8.4 Spatial Disaggregation Model

Having established a short-term predictive model of total visitor activity in Hyde

Park, the next part of the model requires the disaggregation of total activity val-
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ues into individual visitors, accurately dispersed in the area of interest. This was

achieved via an Agent-Based Model (ABM) of Public Space Activity (PSA), cal-

ibrated to park visitor activity. The overall framework of the ABM used for this

SDM has been discussed in detail in chapter 7: Modelling Spatial Behaviour. This

section will discuss matters relating to this ABM, as they were approached through

this case study. The section will focus on two main points: First, the generation of

the model environment (a 3D virtual representation of Hyde Park), and second and

most important, the setup and calibration process of the ABM itself.

8.4.1 Virtual Environment Generation

The importance of spatial three-dimensional models has already been established

for the context of this work. Although at first the necessity of the vertical dimen-

sion was contemplated, it was decided that the Hyde Park case study would be

implemented in a 3D environment. Some notes on this decision: At first glance,

Hyde Park does not offer any strong arguments for the use of the third dimen-

sion; it lacks any additional levels either under or over the ground level, with all

activity taking place on a single surface, and furthermore, its topography and land-

scape do not exhibit any drastic differences, with maximum height differences in

the range of 60 meters across lengths of approximately 1 km, rendering them effec-

tively negligible. It would therefore be definitely acceptable to develop the ABM

in a two-dimensional environment. However, a two-dimensional implementation

was considered to be a potential limitation, as any further application to additional

areas would require significant expanding of the methodologies developed in this

first case study, should they present more complex topography. Given that this was

the first case study, it was decided to take an approach similar in spirit to the use

of only publicly available datasets and approach this from a broader perspective so

as to allow for additional applications, and therefore develop this model in three

dimensions.

A primary requirement then for this case study was for the ABM to run in a 3D en-
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vironment. At the time when the case study was developed, no existing 3D model of

Hyde Park could be found at an acceptable resolution. Therefore, a new 3D model

of Hyde Park was created, using data from the UK Ordnance Survey and Open-

StreetMap (OSM). Data was cleaned, manipulated, and modified using a series of

software: QGIS, Esri CityEngine, Autodesk 3DS Max, and ultimately Unity, where

the ABM was implemented. Specifically, the datasets used were the OS MasterMap

topography layer and Terrain 5 DTM (Ordnance Survey Digimap Licence), and the

OSM geodatabase (©OpenStreetMap contributors).

(a) All OSM Path Types, Grouped by Tag (b) Simplified Path Geometries

Figure 8.16: OpenStreetMap Path Geometry Cleanup

The OSM geodatabase was used as the basis for the generation of the 3D envi-

ronment. The first task was to create path geometries for all pedestrian paths in

Hyde Park. For this task, polyline geometry was imported into QGIS, classified by

type obtained by OSM tags, as can be seen in 8.16a, and pedestrian paths were

isolated. Pedestrian paths included polylines with the tags ’cycleway’, ’footway’,

’path’, ’pedestrian’, and ’service’. The isolated geometries were simplified and

merged into one category. The resulting paths are seen in 8.16b. The second task

was to create a list of all tree locations in Hyde Park, so that trees could be placed in

the 3D model. Information on tree locations exists in two forms in OSM: as point

geometry for individual trees, and as polygon geometry outlining wood areas, and

both types exist in OSM data of Hyde Park. Tree densities were calculated from ex-

isting tree point geometries, and the wood polygon areas were filled with additional
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tree points according to average tree density for the park. The code used and overall

tree reconstruction process is detailed in section A.5.

(a) Terrain (b) Paths Placed On Terrain

(c) Shapes from Paths (d) Meshes from Shapes

Figure 8.17: Generation of 3D geometry from shapefiles in Esri CityEngine

The next step in the generation of the 3D environment required the conversion of

geodatabase information into actual 3D mesh geometries. This was performed in

Esri CityEngine, a software specializing in procedural 3D modelling. First, the

terrain topography was recreated ( 8.17a), using a Digital Terrain Model (DTM)

from Ordnance Survey. The simplified path geometry that was created previously in

QGIS was then imported and nodes were placed on the terrain ( 8.17b). Third, using

CityEngine’s procedural rules, path lines were expanded into shapes with appropri-

ate widths, and the areas in-between paths were filled with solid polygons ( 8.17c).

Finally, the resulting shapes were converted into 3D geometries, given ’terrain-type’

properties, and grouped by type (four terrain types were defined, ’path’, ’green’,

’water’, and ’road’, 8.17d). The resulting geometry was exported as an FBX file,
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and further refined in Autodesk 3DS Max, before imported into Unity.

The final step in the environment generation process required all assets to be im-

ported into Unity, the platform where the ABM was developed in. Unity supports

3D geometries, and so the FBX file was added to the Unity project without further

work. Tree locations were imported as a coordinate list in text format, parsed, and

placed in the correct locations. Gates and points of interest/features were added

manually for the Hyde Park model. The combined 3D model is shown in Fig-

ure 8.18.

8.4.2 Model Calibration

The park visitor ABM rules and parameters implemented in this model have been

discussed extensively in Chapter: 7. This section will present the process of cali-

brating and verifying the model. As a general rule, agent behavioural parameters

were set to reflect observations of human behaviour in public spaces, as discussed in

chapter 2: Understanding Public Space Use, and model calibration involved tweak-

ing and refining parameter values. Unfortunately, no publicly available dataset was

found at a high enough spatial and temporal resolution to calibrate against, and

therefore the calibration process was done against park visitor data captured during

site surveys. Specifically, survey dates 04/10/2015 and 14/10/2015 were used for

ABM calibration.

No aggregate activity forecast data was used in the calibration runs to control the

population. Instead, the model was set to initialize with a visitor population of 800,

set to increase by 200 at each update, and stabilize at 1600. After a few updates

at a population of 1600 and park activity had stabilized, relevant model output was

captured. For visual verification of calibration process, a grid of cubes was set up

over the environment area, at 100 meters, with every cube updating its appearance

(height and opacity) depending on the number of agents within the grid square.

The first point in the calibration process was to establish gate importance, whether
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Figure 8.18: Hyde Park 3D Environment in Unity
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gate preference by agents has any effect on overall model behaviour, and if so, de-

termine gate weight values for each gate. No dataset was available to calibrate gate

importance, and so an exploratory comparison test was performed, first with all

gates having equal weights, then with some gates having a weight of 5, meaning

they were 5 times more likely to be chosen by an agent to enter or exit the simula-

tion. The results of both runs are seen in Figure 8.19. As can be seen in the figure,

gate preference does not seem to have a large effect on overall agent distribution.

(a) No Gate Preference (b) With Gate Preference

Figure 8.19: Gate Preference Comparison. Larger blocks in 8.19b mark gates with in-
creased weights.

Another model parameter examined here was the agent view distance. This distance

was originally set at 100 meters based on literature, however as can be seen in 8.20a,

this resulted in agents tending to move in circles in small areas, and getting tangled

in slightly more complex geometry. A view distance of 200 meters was used, as a

balance between expanding movement over the whole area and keeping the value

close to observed values in literature.

(a) Agent View Distance 100m (b) Agent View Distance 200m (c) Agent View Distance 300m

Figure 8.20: Agent View Distance Comparison. Images show the paths of two agents in
each simulation run after 4500 frames.

Another matter of consideration regarding view distance and movement was
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whether a next path length limit should be set, when compared to the straight-line

distance between origin and destination. A distance cap was placed at 2 times the

straight-line distance, meaning that a new random target would only be considered

valid if the path to it was at most twice as long as the direct distance to it. The effect

of this limit can be seen in Figure 8.21. In 8.21b, where no path length limiting is

applied, agents tend to circumnavigate the Serpentine River more often. Ultimately

it was decided to not place this limit, under the assumption that as long as a location

was within effective view, it would be considered valid.

(a) With Path Length Limit (b) Without Path Length Limit

Figure 8.21: Path Distance Limiting Comparison

Agent group size was drawn from a table of integer values between 1-4, with fixed

probabilities as discussed in subsubsection 7.3.3.3. Data on visitor statistics was

gathered from visitor surveys that took place in Hyde Park (Ipsos Mori, 2015a),

where visitor group average size was found to be approximately 1.72. Average

simulation group size over time is shown in Figure 8.22, converging to 1.72 over

the course of the simulation.

Agent lifetime, signifying visit duration, was similarly drawn from a distribution

based on visitor surveys (Ipsos Mori, 2015a), and set individually at agent creation.

Average lifetime over time can be seen in Figure 8.23. The model seems to be

underperforming slightly, stabilizing at an average agent lifetime of approximately

4500 ticks (75 minutes), compared to visitor average 4842 (80.7 minutes). This

is possibly due to the model population control routine, which allows agents to be

removed from the simulation prematurely, and therefore introducing a slight bias.
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Figure 8.22: Agent Group Size Verification

Figure 8.23: Average Agent Lifetime

8.5 Evaluation

The overall Real-Time, Public Space Activity model of Hyde Park has been pre-

sented thoroughly at this point. It consists of two sub-models, the aggregate activity

forecast model, and the spatial disaggregation model. The overall model uses real-

time Social Media (SocM) and weather data as input, and generates a simulation

and visualisation of activity in the park in real-time, at the individual visitor scale.

Overall model performance will be evaluated in this section.

Some notes on validation datasets: The objective of the overall real-time activ-

ity model was to simulate individual visitor activity for any point in time, i.e. the

model aims to perform at high temporal and spatial resolutions. A dataset capable of

validating the overall model would therefore need to have the same characteristics,
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however no such dataset was available. In light of this, it was decided to evaluate

sub-model performance separately: temporal accuracy was evaluated through a val-

idation of the forecast sub-model, and spatial accuracy through a validation of the

spatial disaggregation model.

The aggregate activity forecast sub-model was evaluated against a subset of the

SocM-weather dataset, which included available dates in March 2016, 28 days in

total. SocM values were calculated for each quarter-hour period as a sum of the past

90 minutes, and compared to observed data. A range of error measures was cap-

tured: mean absolute error (MAE) and root mean squared error (RMSE) as quick

scale-dependent error metrics, mean absolute percentage error (MAPE) and sym-

metric mean absolute percentage error (sMAPE) as percentage error metrics, for

comparison across the dataset. The full validation set is presented in Table 8.7.

The four metrics were consistent in identifying the most (17/03/2016) and least

(25/03/2016) accurate forecasts, and furthermore were broadly consistent in record-

ing overall model error. Figure 8.24 shows two examples of the two outliers, and a

full list with validation graphs for all dates is included in Appendix C.1. As can be

seen from the graphs, the forecast model developed here performs well at capturing

and predicting overall activity for ’default’ days, i.e. days with standard condi-

tions, and can therefore adequately provide an estimate of ’typical’ park conditions

and activity. However, as is also evident from the graphs, ’typical’ conditions are

hard to find and define, and the forecast model falls short at capturing large out-

liers (e.g. festivals, popular events, etc), and further capturing micro-variation in

SocM activity, from using weather and temporal data alone. This model limitation

was expected: As no reliable real-time data source was found that captured planned

events, this parameter was not included in the model, and therefore it is expected

that any day with a special event will be mis-predicted by the model.

In validating the SDM, the goal was to evaluate the distribution of activity through-

out the area only, and not focus on any temporal properties. Sub-model evaluation

was performed against activity distribution in the area as captured in site surveys
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Date MAE RMSE MAPE sMAPE
01/03/2016 7.750 9.234 39.06% 27.32%
02/03/2016 9.174 11.394 50.21% 24.62%
03/03/2016 4.248 5.547 15.26% 14.88%
04/03/2016 4.630 5.755 16.75% 18.89%
05/03/2016 10.769 14.791 45.03% 24.40%
07/03/2016 6.222 7.897 27.23% 18.79%
08/03/2016 6.707 8.721 29.71% 17.62%
10/03/2016 4.799 6.543 19.19% 16.71%
11/03/2016 8.018 12.899 22.36% 15.39%
12/03/2016 16.015 20.211 33.44% 23.55%
13/03/2016 16.917 25.034 25.99% 22.55%
14/03/2016 12.844 17.128 33.31% 29.51%
15/03/2016 7.560 9.023 29.30% 24.52%
16/03/2016 5.844 7.305 22.28% 18.99%
17/03/2016 4.058 5.074 13.87% 11.07%
18/03/2016 4.639 5.563 21.36% 21.03%
19/03/2016 6.195 8.025 25.02% 22.83%
20/03/2016 9.238 11.900 23.43% 18.57%
21/03/2016 6.690 7.949 25.34% 27.26%
22/03/2016 8.870 12.321 25.58% 16.76%
23/03/2016 7.033 8.883 26.93% 19.47%
24/03/2016 9.810 12.928 49.67% 24.28%
25/03/2016 43.408 60.947 61.87% 39.63%
26/03/2016 12.192 16.062 32.06% 27.06%
28/03/2016 9.231 13.226 28.66% 25.71%
29/03/2016 6.389 9.239 25.62% 19.58%
30/03/2016 7.349 9.186 24.24% 19.98%
31/03/2016 12.388 16.452 32.78% 23.31%

Table 8.7: Forecast Model Validation - HyP

performed on 02/10/2015 and 11/10/2015. Synthetic data was collected by running

a simulation with an agent population size similar to visitor volume collected at

each survey. An initial comparison between simulated and recorded activity distri-

bution is presented in Figure 8.25, visualising activity heatmaps, which shows that

the model is successful in replicating major activity hotspots.

Further to visual evaluation, a statistical validation method was implemented, in or-

der to apply a more thorough comparison. The method used was the Expanding Cell

Validation Method, proposed by Malleson et al. (2010). The expanding cell vali-
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(a) Most accurate 17/03/2016 (b) Least accurate 25/03/2016

Figure 8.24: Daily SocM Forecasts - Validation

(a) Weekday Simulated (2022 agents) (b) Weekday Recorded (2687 visitors)

(c) Sunday Simulated (4430 agents) (d) Sunday Recorded (4340 visitors)

Figure 8.25: Hyde Park ABM Activity Heatmaps

dation method involves aggregating points to a regular grid duplicated and shifted

slightly in the four cardinal directions, and measuring the error between simulation

and observations for each cell. Additionally, given that simulation results may not
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always replicate total recorded activity accurately, proportional values are used for

each cell taken as a percentage of the total observation count. These two character-

istics present two benefits of the method: Proportional counts allow for comparison

between datasets of different size, and the shifting grid helps account for the mod-

ifiable areal unit problem, as each location is potentially measured by up to five

different grids, therefore highlighting the validity of any hotspots.

For the Hyde Park case study, multiple grid cell sizes were generated and tested, to

observe how the model behaves at different observation scales, and to identify the

scale of accuracy for the model. The code used to generate the grids and calculate

the cell error is presented in Appendix A.5.2. Results are shown in Figure 8.26. As

can be seen, the model’s effective scale of accuracy is found to be better at smaller

observation scales (Figures 8.26a, 8.26b). This is to be expected; the majority of

activities is found to be concentrated around points of interest both in the simulation

and in observations, specifically restaurants and the Speaker’s corner. Although the

simulation has captured the locations of these hotspots accurately, the volume of

activity was not captured in the simulation2, with the model either over- or under-

estimating the magnitude of activity in these locations. At larger grid sizes, these

hotspots are the major influence in any cell count capturing them, whereas at smaller

grid sizes the grid capturing method is essentially overtaken by site survey recording

accuracy, which was set to approximately 100 meters, and therefore at this scale

point locations have been sufficiently randomly distributed to provide a smoothing

effect over the cell. Given the scale of observation then, the ABM’s effective scale

of accuracy for CS1:HyP was identified to be at a cell size of 2.77 ha (the grid size

closest to the observation size of 3.14 ha, as defined by the 100m radius observation

range). At this scale, the ABM performed well in identifying activity hotspots as

well as identifying areas with minimal activity, with overall accuracy error below

5.5%.

2And it was not expected to be captured either, as no detailed dataset was available regarding
restaurant visitor numbers
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(a) Weekday Simulation: Cell Error by Cell Size (b) Sunday Simulation: Cell Error by Cell Size

(c) Weekday Simulation Validation Grid - Cell
Size: 2.77ha

(d) Sunday Simulation Validation Grid - Cell
Size: 2.76ha

Figure 8.26: Hyde Park ABM Spatial Validation. Error is measured as the difference be-
tween proportional grid counts (recorded−simulated). Red hues show model
overestimation, blue hues show model underestimation.

8.6 Summary

Overall, CS1:HyP offered a valuable test-bed for applying and testing the various

methodologies discussed in this work. Furthermore, it was carried out using solely

publicly available datasets, and the interpretation of any results should be done with

this constraint in mind, as this case study has demonstrated that physical public life

is indeed reflected to a degree in our digital public life.

With specific regard to the aims set out at the beginning of this chapter:

1. Identification of relevant data sources. A range of publicly available, po-

tentially real-time data sources that may reflect public space activity were

identified and tested, including social media platforms Twitter, Instagram,

and Facebook, weather forecast web service forecast.io, and transport data
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from TfL. Of these, only weather forecast data was reliably captured through-

out the duration of the study. Twitter and Instagram data was being reliably

collected until changes in one of the services made collection impossible, and

therefore while those datasets were relevant, they are no longer available. The

rest proved to be either unreliable in collection, or irrelevant to public space

activity.

2. Development of appropriate data capturing methodologies. The auto-

mated collection scripts presented here provided a reliable way of continu-

ously capturing data for a duration of approximately 9 months. Although

data collection was taking place once a day, the methodology could certainly

be applied to shorter time spans to have a real-time data collection.

3. Development of a PSA forecast model, capable of performing in RT, and

subsequent calibration of the model using available data sources. The ag-

gregate park activity forecast model discussed here performed well in captur-

ing ’standard’ activity throughout the day for uneventful days, but was found

lacking in capturing special events. Nevertheless, this forecast model was

useful at continuously providing baseline estimations at 15 minute intervals.

4. Development of a SDM using the ABM paradigm, to simulate individ-

ual visitor activity in the area of interest, capable of performing in RT.

Subsequent calibration of SDM parameters. The ABM used to simulate

individual visitor activity performed well in capturing both locations of in-

creased activity, as well as areas of reduced activity. Initial aims involved

the use of additional spatially fine datasets for validation, however as no such

dataset was found, validation was partially performed against site survey data.

Nevertheless, the Hyde Park case study, demonstrated that ABM modelled af-

ter observations of public space users’ behaviour was successful in capturing

overall park activity.

5. Evaluation of the overall RT model, as well as sub-models. The real-time
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modelling methodologies presented in this work were not evaluated as an

overall real-time model in this study, as no dataset was found that had both a

spatial and temporal resolution high enough.

In conclusion, this case study offers partial validation of the modelling approach, as

it illustrates that current activity under normal conditions can be predicted through

environmental and temporal parameters. Even though the spatial disaggregation

part of the model was not extensively tested, this is acceptable, as this case study

was used as an initial test-bed for the development of methodologies. As such, even

if overall real-time modelling methodologies were left without validation, this case

study offered valuable insight for the development of the ABM that was used for

the whole of this work.





Chapter 9

Case Study 2 - Queen Elizabeth

Olympic Park

This chapter will discuss the second case study carried out in this thesis, Case

Study 2: Queen Elizabeth Olympic Park (CS2:QEOP), with the aim of developing a

real-time model of Public Space Activity (PSA) for Queen Elizabeth Olympic Park

(QEOP) in London, UK. It was carried out as a direct continuation and for validation

purposes of Case Study 1: Hyde Park (CS1:HyP), by extending the methodologies

developed in CS1:HyP and applying them to a new target area. The new area of

interest provided some additional opportunities as well in the form of new datasets

not available for CS1:HyP, specifically detailed records of wireless device connec-

tivity to QEOP’s wireless network, which provided a significant level of detail for

real-time park activity. CS2:QEOP therefore also focussed on exploring the poten-

tial of new datasets from networked infrastructure for the purposes of real-time PSA

models. This chapter will follow a similar format to chapter 8, and will cover the

main aims and objectives of CS2:QEOP, an extensive discussion on datasets used

along with collection methods and analysis, calibration of both model components

(forecast model and Spatial Disaggregation Model (SDM)) in the context of the new

area, and an evaluation of the overall model as well as its individual parts.

The chapter will begin with an introduction to the case study (section 9.1), establish-
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ing the overall aims of CS2:QEOP. The area itself is presented initially, discussing

particular characteristics regarding park use, management, and unique features and

management goals, as well as area morphology and its effect in this case study. Fol-

lowing the area introduction, case study aims are presented to establish the research

context, and the individual objectives for CS2:QEOP are set, which will guide the

rest of this case study.

The next section (section 9.2) focusses on data used in this study, including both

remotely captured Real-Time Data (RTD) and static/ground truth data. It re-

introduces all data sources previously used in CS1:HyP (Social Media (SocM),

weather, site surveys) and re-establishes them within the context of CS2:QEOP,

and further introduces and discusses new datasets used in this case study (wire-

less connection records). This section also presents the data clean-up process and

concludes with the final data formats used for the rest of this case study.

Following the presentation of datasets, the next section (section 9.3) discusses how

those datasets were used to calibrate the various aggregate activity forecast models

used to estimate current overall activity in QEOP. Given the multiple data sources

available for this study, multiple different forecast model parameters are tested,

using previous methods (SocM), new datasets (Wifi), as well as a naive forecast

model, establishing the effectiveness of each.

Next, section 9.4 presents the SDM model used to simulate individual visitor ac-

tivity in QEOP. The SDM used here is the PSA Agent-Based Model (ABM) first

presented in chapter 7 and applied in CS1:HyP, calibrated to QEOP parameters.

Finally, the second-to-last section (section 9.5) presents an evaluation for the whole

case study. It discusses the validation methods used to evaluate both the overall

model as well as its individual components (forecast model and SDM).
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9.1 Overview and Aims

The second case study focusses on Queen Elizabeth Olympic Park (QEOP), a

newly developed park in east London, UK. It was constructed for the London

Olympics in 2012, and includes some of the most prominent buildings of the

Olympic Games, such as the Olympic Stadium, the Aquatics Centre, and the cy-

cling track (VeloPark). These buildings are surrounded by grasslands, meadows,

and other open spaces comprising the overall park in an area spanning approxi-

mately 100 hectares, through which runs a significant waterway, the River Lea. The

entity responsible for maintaining, developing, and delivering the park to the public

is the London Legacy Development Corporation (LLDC).

The LLDC is aiming at developing a Smart Park at QEOP, by targeting contempo-

rary challenges such as crowd management, environmental sensing, sensing local

biodiversity health, and engaging visitors with the park, by exploring the potential

applications of the Internet of Things (IoT) to address these challenges. These ef-

forts are done in collaboration with academic and research institutions, including

University College London (UCL), Centre for Advanced Spatial Analysis (CASA),

and Intel Collaborative Research Institute (ICRI). These institutions in collaboration

with the LLDC are developing state-of-the art methodologies to tackle the specific

challenges mentioned here using novel datasets generated through these technolo-

gies.

CS2:QEOP fits within the greater context of QEOP as a smart park, focusing on

crowd and park visitor activity captured through visitor connectivity to wireless net-

work access points, in addition to employing previous visitor modelling approaches.

For the purposes of CS2:QEOP the area boundaries are set so that the park includes

mainly open, accessible spaces, as can be seen in Figure 9.1. As has been discussed

earlier in this thesis, this work focusses exclusively on open, public spaces, and for

this reason it was decided that indoor areas such as the Stadium itself or the Aquatics

Centre would not be included, as indoor spaces potentially require different method-

ologies in modelling crowd behaviour. Therefore, for the rest of this case study any
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Figure 9.1: Queen Elizabeth Olympic Park Case Study Area Boundaries

reference to QEOP in general will refer to the open spaces (pathways, grasslands,

lawns, meadows, bridges, paved areas, outdoor restaurant seating areas, etc.) found

in the area, and are freely accessible and visible from other locations in the park.

The primary aim of this second case study was to further expand on the approaches

and findings of the first case study, by extending the application scope on to a new

location. Overall method validity has been established already, and its application

to real-world scenarios has been examined in the previous case study and found to

have acceptable results, for components where data was available for validation.

Therefore, the specific objectives set for this second case study were different to the

ones set for CS1:HyP. More specifically, CS2:QEOP was planned as a continua-

tion and cross-validation to CS1:HyP with an additional focus on PSA information

captured via novel sensing approaches implementing networked infrastructure, and

furthermore as a test-case regarding ABMs of public space activity applied in mor-

phologically more complex environments. The particular objectives were set as

follows:

1. Validation of CS1:HyP methodologies. All of the successful approaches
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developed and used in CS1:HyP were again applied in CS2:QEOP, to exam-

ine their applicability to a wider range of scenarios. Existing methodologies

re-applied in this case study include the capturing of SocM and weather data,

re-calibrating and running the real-time aggregate activity forecast model, re-

calibrating the SDM to simulate park visitor activity in QEOP, and imple-

menting similar validation methods regarding sub-model performance.

2. Exploration of the potential of novel datasets. QEOP, through its ’Smart

Park’ approach, presents an opportunity in capturing novel information of

park visitor activity, in the form of connections to various access points of the

wireless network at the park. These new, non-publicly available datasets offer

a potentially much more varied and detailed picture of park visitor activity,

and are furthermore captured in real-time, and therefore their potential contri-

bution in Real-Time Simulations of Public Space Activity will be examined.

3. Verification of PSA ABM capabilities in more complex environments.

This case study presents a more complex overall geometry compared to

CS1:HyP, and therefore allows for the evaluation of ABM performance

in more varied environments. Compared to the environment in CS1:HyP,

CS2:QEOP has a steeper landscape with significant (for an urban park) hills

and valleys, as well as overlapping geometry such as bridges. Overall model

applicability to varied morphologies of urban space was evaluated by apply-

ing the SDM to a detailed virtual 3D reconstruction of QEOP.

9.2 Data Sources and Analysis

The entirety of the datasets used in the second case study will be discussed in this

section, covering capturing methods, manipulation/clean-up, and uses. Overall, the

datasets used are divided into two categories: Static data, containing data that was

captured intermittently, data referring to a single point in time, or used as such,

and Continuous/Real-Time data, containing datasets that were made available in
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a streaming, real-time fashion, or data that can be potentially used in a real-time

fashion, as defined in section 4.1.

9.2.1 Real-Time Datasets

9.2.1.1 Social Media - Weather Data

Social Media (SocM) data was collected for CS2:QEOP to be used as a proxy for

real-time park visitor activity in the park, and correlated with weather conditions

to investigate relationships between weather and park activity. Collection and anal-

ysis methodologies follow directly from the methodologies developed and applied

in CS1:HyP. More specifically, SocM collection focused on geolocated Twitter and

Instagram posts originating from within the boundaries of QEOP, and was per-

formed using the respective services’ Application Programming Interfaces (APIs).

Collection began on January 28th 2016 and ended on May 31st 2016, after signif-

icant changes in Instagram’s API, as discussed earlier in section 6.1. Weather data

was collected using darksky.net’s weather API for the same period. The automated

scripts used for SocM and weather data collection are presented in detail in sec-

tion A.3 and section A.4 respectively. Out of the 125 days in total, on 1 day the

collection script failed to run. Furthermore, a subset of the full dataset was removed

and stored for validation purposes, spanning 30 days during the month of March

2016, 24.19% of the total dataset.

Initial results from SocM data collection around QEOP seemed to be consistent

with similar data from CS1:HyP, with an average daily total of 323.9 SocM posts

and value peaks generally centered around Sundays and Weekends, as expected.

However, after initial clean-up and filtering of results by location, the final SocM

dataset containing only records that originated from within the QEOP boundaries

(rather than within a certain distance from the queried location, as is the standard

response from platform APIs) was reduced significantly, with an average daily total

of 76.3 SocM posts. A comparison of filtered and unfiltered results can be seen in

Figure 9.2, where it is clear that valid results are a small fraction of the total dataset.
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Figure 9.2: SocM Daily Totals In and Around QEOP

This difference between filtered and unfiltered values is attributed to two factors:

First, the case study area’s boundary geometry, which presents an elongated shape

in the North-South axis, in combination with the respective platforms’ search APIs

which require a center point and search radius, result in a large circular catchment

area centered on the park in order to capture all of the area, and therefore results for

large parts outside the park are returned as well. Secondly, QEOP’s close proximity

to locations that consistently attract large crowds (such as the Westfield shopping

centre and Stratford International train station) means that returned results include

large crowds in close proximity to the park, but which do not necessarily translate

into actual park visitors. Figure 9.3 illustrates these points, showing a map of the

spatial distribution of filtered and unfiltered SocM events around QEOP for a single

day.

SocM events were disaggregated to quarter-hour totals, and further smoothed using

a moving sum window of 90 minutes, similar to CS1:HyP (Figure 8.6). As can be

seen in Figure 9.4, quarter-hour values are quite low for the majority of days, with

many days exhibiting zero SocM events even during midday. There does not appear

to be any apparent pattern in variation throughout the day in SocM within QEOP,

such as the one evident in CS1:HyP (Figure 6.11), and therefore this suggests that



256 CHAPTER 9. CASE STUDY 2 - QUEEN ELIZABETH OLYMPIC PARK

Figure 9.3: Spatial Distribution of SocM results in QEOP. All posts for a single day
(2016/05/08) are shown, with points in yellow highlighting SocM posts in the
area. Out of 1180 total records, only 164 are valid results.

quarter-hour SocM totals in this case study may not correlate with weather condi-

tions for real-time predictions.

Figure 9.4: Quarter-Hour SocM Totals - QEOP (Individual points are plotted with opacity,
more solid colors signify more occurrences)
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9.2.1.2 Wireless Connections Data

In addition to the publicly available SocM dataset discussed above, an exclusive

dataset pertaining to visitor activity was also examined in CS2:QEOP, which cap-

tured device connections to QEOP’s wireless network. This WiFi dataset presented

a detailed picture of real-time activity in the park, containing both spatial and tem-

poral information on park visitor activity (i.e. where were individual visitors, as

well as when they were there). For this case study, a sample of the dataset was used,

which contained all records or the month of March 2016.

The dataset was formatted as a list of all individual connections, presented both as

full connection sessions as well as connection event types, the difference between

the two being that a session refers to the full connection for a single device from the

moment it joined the network to the time it was disconnected from it (and thus a sin-

gle record for the whole duration), while events captured the different interactions

between device and network, such as ’JOIN’, ’DISCONNECT’, ’ROAM FROM’,

and ’ROAM TO’. Therefore a session typically has a unique id and represents the

overall visit, and is itself comprised of multiple events. Additional information

recorded in the dataset includes the unique session id, session end date and time,

duration, data volume sent and received, and the access point id at which the de-

vice was connected during each event. A supplementary dataset included the access

point ids and locations in the park.

Using the information offered in the WiFi dataset, 3 potential benefits were identi-

fied: First, it is possible to count the number of currently active connections for any

point in time, and also to further deduce any derivatives, e.g. daily totals. Second,

it is possible to count the number of currently active connections for any point in

time at each individual access point, in other words it is possible to spatially dis-

aggregate the dataset. Third, it is possible to track individual devices’ movement

throughout the park, recorded as transfers between access points.

Regarding the manipulation and clean-up of the dataset, the first step was to remove



258 CHAPTER 9. CASE STUDY 2 - QUEEN ELIZABETH OLYMPIC PARK

sessions with overall duration larger than 14400 seconds (4 hours). The 4 hour

threshold has been identified in previous studies (Ipsos Mori, 2015b) as the maxi-

mum visit duration. Furthermore, by examining the dataset, some obvious outliers

were identified with extremely long durations (e.g. 2422285.82 seconds, approxi-

mately 672 hours) which could not have been park visitors, rather it is hypothesized

that they may represent stationary wireless devices. Filtering for sessions shorter

than 14400 seconds resulted in 306,275 records, accounting for 98.69% of the full

dataset.

Temporal disaggregation to quarter-hour totals was performed using both the ses-

sions and events datasets. The sessions dataset contains end times and durations

for each connection, and for each session a count was added to the quarter-hour the

session ended, as well as each previous quarter-hour for its duration, for sessions

with a duration larger than 15 minutes. For the events dataset, a count was added

to each quarter-hour where an event was recorded that was not a ’ROAM FROM’

event, on the assumption that if an event has been recorded, then it must have been

fired from a device within the area, and therefore the individual is in the area at the

time of the event. Counts for each day are shown in Figure 9.5.

(a) WiFi Counts - Sessions (b) WiFi Counts - Events

Figure 9.5: WiFi Counts - Quarter-Hour Totals

Both approaches show similar curves for individual days, capturing matching peaks,

however the events counts are on average 2.5 times larger that the sessions counts.

This is expected to an extent: Each session is counted once for each quarter-hour of
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its total duration, however the overwhelming majority of sessions are shorter that

15 minutes. On the other hand, multiple events may be contained within a single

session (a typical session might include for example the initial ’JOIN’ event, a few

pairs of ’ROAM TO’ and ’FROM’, and the final ’DISCONNECT’ event), therefore

inflating the count.

In a similar approach to temporal disaggregation, WiFi data was disaggregated spa-

tially as well, to capture the spread of activity throughout the area. For the spa-

tial disaggregation, network access point ids were used to append connections and

events to individual access points, whose locations are known. For the sessions

dataset, all counts were appended to the access point the device disconnected from,

as this was the only available data. For the events dataset, each event was appended

to the access point that captured the event. Results are shown in Figure 9.6 for a

sample day and time (2016/03/18, 14:30). In both cases, one particular access point

(AP62) is capturing the majority of connections, 20% of all connections on average.

(a) WiFi Counts - Sessions (b) WiFi Counts - Events

Figure 9.6: WiFi Counts At Access Points (2016/03/18 - 14:30). Heatmaps with a Search
Radius of 100, max value of 100.

The WiFi dataset schema has the potential to map individual devices’ movement

through the park, by tracking their hops between access points in the events dataset.

However, examination of actual data illustrated a lack of consistency for this task:

For example, the total count of ’JOIN’ events in the dataset is 330891 events, while

only 197820 ’DISCONNECT’ events are recorded, meaning that 133071 sessions
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are not finalized. Additionally, multiple instances were identified were the same

device id (essentially a unique device) fired multiple consecutive ’JOIN’ events,

with no ’DISCONNECT’ events. For this reason, along with the observation from

the spatial disaggregation regarding the accumulation of the majority of events to

a single access point, it was decided that mapping individual devices’ movement

through the park was infeasible through the WiFi dataset.

9.2.2 Static Datasets

9.2.2.1 Site Surveys

Data on actual visitor activity in QEOP was collected on four occasions via site

surveys, with the aim to record the locations and activities of visitors in the park

as ’ground truth’ information. The method used for recording visitor activity is a

slightly revised version of the site survey method used in CS1:HyP, and has been

presented in detail in a previous chapter (Section 6.3).

Similar to CS1:HyP, an optimal path was planned throughout the area, that would

cover the largest area at the shortest time, and any park visitors visible within

approximately 150 meters from the surveyor path were captured. In contrast to

CS1:HyP however, and due to the more complex terrain in QEOP compared to

Hyde Park (HyP), the area was first divided in separate areas of varying shapes and

sizes, indicated mainly by which locations where visible from the surveyor path.

The path and survey areas can be seen in Figure 9.7.

Four surveys were carried out, on two consecutive days in August 2016. The sur-

veys were carried out in afternoons, at what was assumed to be peak activity hours

for QEOP. A summary of observations for each site survey is presented in Table 9.1.

It appears that activity in QEOP is found to be lower than activity observed in

CS1:HyP, with activity peaking in the mid to late afternoon (approximately at 2pm).

A more detailed view of individual recorded activities (Table 9.2) provides an im-

age similar to observed activity in CS1:HyP, with stationary activities accounting
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Figure 9.7: QEOP Site Survey Path and Areas. The dark blue line signifies the survey path,
while the red polygons mark the different survey areas.

for slightly more than half of all observed activity (50-58% of total activity).

Site Survey Date Day Start Time End Time Duration
(minutes)

Total Visitor
Count

QEOP-S1 2016/08/22 Monday 13:37:29 14:59:17 81 1520
QEOP-S2 2016/08/22 Monday 15:53:36 17:08:39 75 1479
QEOP-S3 2016/08/23 Tuesday 12:01:07 13:16:28 75 2008
QEOP-S4 2016/08/23 Tuesday 13:59:27 15:18:24 78 2656

Table 9.1: QEOP Site Survey Summary

Site Survey Date Day Total Visitor
Count

Sitting
Counted

Walking
Counted

Walking
Estimated

Sitting
Percentage

QEOP-S1 2016/08/22 Monday 1520 1026 494 988 50.94%
QEOP-S2 2016/08/22 Monday 1479 1001 478 956 51.15%
QEOP-S3 2016/08/23 Tuesday 2008 1430 578 1,156 55.30%
QEOP-S4 2016/08/23 Tuesday 2656 1952 704 1,408 58.10%

Table 9.2: QEOP Site Survey Visitor Statistics

Further work on the filed survey data required the dispersion of recorded activity

points from the surveying path into the general area. For the dispersion, the pre-

viously used distance limit was used, with a dispersion distance limit set to 150

meters. An additional rule was used however, relating to the survey areas men-

tioned earlier, so that the newly calculated activity location was also within the

current survey area, adding another level of consistency between actual and recal-
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culated activity locations. The final recalculated activity heatmaps can be seen in

Figure 9.8

(a) 2016/08/22 Early Afternoon (b) 2016/08/22 Late Afternoon

(c) 2016/08/23 Early Afternoon (d) 2016/08/23 Late Afternoon

Figure 9.8: QEOP Site Survey Activity Heatmaps.

9.2.2.2 Webcam Pedestrian Counts

Another exclusive dataset that was used in CS2:QEOP is pedestrian counts per-

formed at park entrances, captured using camera tracking and automated counts.

Although in principle this dataset may be used in real-time, with current pedestrian

counts being streamed directly into the model, in this case it was used as static data,

to identify the most popular gates overall. This information was subsequently used

in the SDM (as discussed later in section 9.4), to calibrate the gate weights for the

park visitor ABM.
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id name entries exits total average
10 Canal Park Towpath 2166 785 2951 1475.5
8 F10 Bridge 122648 94643 217291 108645.5
6 GreenwayPath 3761 753 4514 2257
2 Hackney Wick Bridge 4246 32679 36925 18462.5
5 HonourLeaAvenue 45692 59142 104834 52417
7 Iron Bridge LH 8981 9987 18968 9484
9 MonierBridge 10680 14275 24955 12477.5
3 Top of Waterden Road 3453 3632 7085 3542.5
4 Westfield Avenue 27978 30816 58794 29397
1 WhitePostLane 11081 10454 21535 10767.5

Table 9.3: Pedestrian Entries and Exits at Gates

Pedestrian counts were supplied as totals at short intervals for each location, di-

vided into people exiting and entering the park, for the whole month of March 2016.

These values were summed for each location, and a weight for each gate was calcu-

lated as an average between entries and exits. The values are shown in Table 9.3. It

is interesting to note that some gates exhibit significant differences between entries

and exits: F10 Bridge (8) shows an abundance of entries of approximately 28,000,

while Hackney Wick Bridge (2) exhibits a deficit of a similar level, meaning that

some gates tend to function mainly as entrances while others are used predomi-

nantly as exits. Furthermore, this characteristic suggests that the park is also used

as traversal space, especially given the fact that the most popular entrance is F10

Bridge (8), which is one of the park entrances closest to a major train terminal. The

spatial distribution of total counts by gate can be seen in Figure 9.9.



264 CHAPTER 9. CASE STUDY 2 - QUEEN ELIZABETH OLYMPIC PARK

Figure 9.9: Pedestrian Counts at Gates - QEOP

9.3 Forecast Model

The real-time datasets presented in the previous section were primarily used in cal-

ibrating the aggregate activity forecast model for QEOP. It was assumed that these

two datasets (SocM and WiFi) offer a representative sample of actual visitor activity,

and as such could be used as a proxy for actual activity. Three forecast models were

implemented: A Generalized Linear Model (GLM) correlating SocM as a function

of weather and temporal conditions (same as the polynomial regression forecast

model implemented in CS1:HyP), a similar GLM calculating WiFi connections as a

function of weather and temporal conditions, and finally a naive forecasting model.

All three models were implemented at a temporal resolution of 15 minutes.

9.3.1 Social Media - Weather Forecast Model

The SocM - weather forecast model that was implemented in CS2:QEOP is a mul-

tiple linear regression model, correlating quarter-hour SocM values (predicted vari-

able) with time of day and weather parameters (predictor variables), as presented

and implemented in CS1:HyP. Correlation with time of day was implemented as a

polynomial regression, while weather parameters were included as scalars. In its
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general form, the multiple linear regression model is defined as

SocMt = b0 +b1 ∗hrt +b2 ∗hr2
t + ...+bn ∗hrn

t +Wt

for cases where weather and temporal variables are combined additively, or

SocMt = (b0 +b1 ∗hrt +b2 ∗hr2
t + ...+bn ∗hrn

t )∗Wt

for cases where weather and temporal variables are combined multiplicatively, with

SocMt signifying SocM events at time t, hrt is the time of day at time t, and Wt is

the relevant weather variable at time t.

A series of calibration tests were performed, to identify the optimal parameter set

and coefficients for the SocM/weather GLM, by using an Ordinary Least Squares

(OLS) method and measuring the adjusted R2 values for different model forms, pa-

rameter sets, and day type classifications. The calibration test results are presented

in Table 9.4.

Model Week Weekdays Weekends Saturdays Sundays
SocM : hr3 0.192 0.164 0.288 0.293 0.282
SocM : hr4 0.197 0.166 0.301 0.316 0.288
SocM : hr5 0.197 0.169 0.302 0.320 0.287

SocM : hr5 + temp 0.235 0.216 0.330 0.328 0.345
SocM : hr5 + cCov 0.198 0.169 0.332 0.322 0.371
SocM : hr5 + wndSpd 0.199 0.169 0.332 0.327 0.355
SocM : hr5 + precP 0.197 0.170 0.302 0.322 0.287
SocM : hr5 + precInt 0.198 0.171 0.302 0.319 0.287

SocM : hr5 * temp 0.247 0.238 0.345 0.332 0.378
SocM : hr5 * cCov 0.200 0.171 0.361 0.366 0.421
SocM : hr5 * wndSpd 0.203 0.182 0.349 0.349 0.379
SocM : hr5 * precP 0.201 0.173 0.313 0.357 0.292
SocM : hr5 * precInt 0.200 0.174 0.310 0.348 0.288

Table 9.4: Adjusted R2 for SocM - Weather Linear Model by Coefficient - QEOP. Model
best fits for each calibration stage and day type are highlighted in bold.

Similar to CS1:HyP, a 5th degree polynomial for the time of day parameter provides
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the best fit overall, compared to 4th and 3rd degree polynomials, although not for all

day type classifications. regarding the combination of weather and time variables,

it seems that multiplicative combinations provide a better fit, as expected, com-

pared to additive combinations. However, no single weather parameter appears to

provide the best fit across all day types in either variable combination type. Specifi-

cally, it appears that temperature, cloud coverage, and wind speed all provide some

significant improvement in model fit over different day types. Finally, and most

importantly, adjusted R2 values are very low overall (R2 < 0.42, 0.273 average),

compared to equivalent values in CS1:HyP, which hints at issues with the dataset

itself.

Figure 9.10: SocM/Time Plot - HyP Figure 9.11: SocM/Time Plot - QEOP

Indeed, looking at a plot of SocM against time of day (Figure 9.11) and comparing

to a similar plot for CS1:HyP (Figure 9.10), the reason for these low R2 values be-

comes clear. First of all, SocM values for QEOP range between 0 and 50, whereas

the HyP equivalent is 0 - 200. Secondly, although QEOP SocM follow a simi-

lar daily image to HyP SocM, with low values during the night and higher values

found during daylight hours, they do not seem to do so with any discernible pat-

tern, and in fact there appear to be zero values during the day as well. These two

characteristics therefore appear to make forecasting SocM values using weather and

temporal parameters in QEOP an ineffective approach.
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9.3.2 WiFi - Weather Forecast Model

The second approach to forecasting aggregate park visitor volume in QEOP used

the number of WiFi connections as a proxy for actual visitor activity. The dataset

has been discussed previously (subsubsection 9.2.1.2), and it has been established

that it is possible to extract total WiFi connections for any period of time. In order to

implement a forecast model using WiFi data, the dataset was temporally aggregated

to quarter-hour intervals, and subsequently a multiple linear regression model was

developed, in a similar approach to the SocM/weather forecast model.

Figure 9.12: WiFi/Time Plot - QEOP, with trendline for 5th degree polynomial of time of
day variable

Regarding the dataset itself, by plotting quarter-hour totals against time of day (Fig-

ure 9.12), it appears that the WiFi data exhibits a more distinctive and expected daily

pattern compared to the QEOP SocM dataset, with values rising steadily from early

morning into the afternoon, and then smoothly dropping into the evening, similar

to HyP SocM values (Figure 9.10). However, the available dataset includes only a

sample covering the entire month of March 2016, containing 31 days. Of these, 6

days were extracted and kept separately for validation purposes, thus reducing the

total days to 25, which is evident in the thinned plot.
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Model Adjusted R2

WiFi : hr3 0.658
WiFi : hr4 0.680
WiFi : hr5 0.715
WiFi : hr6 0.716
WiFi : hr7 0.716

WiFi : hr5 * temp 0.731
WiFi : hr5 * cCov 0.718
WiFi : hr5 * wndSpd 0.720
WiFi : hr5 * precP 0.720
WiFi : hr5 * precInt 0.717

Table 9.5: Adjusted R2 for WiFi - Weather Linear Model by Coefficient. Model best fits
for each calibration stage are highlighted in bold.

The multiple linear regression model implemented here was of the form

WiFit = (b0 +b1 ∗hrt +b2 ∗hr2
t + ...+bn ∗hrn

t )∗Wt

similar to the SocM/weather forecast model. Given the sparsity of the dataset, it

was not possible to classify by day type, as that would potentially leave the Weekend

category with as little as 6 days’ worth of data, and therefore the model calibration

process was run for the whole week as a single set. The calibration process first

looked at determining the polynomial degree with the best fit for the time of day

variable, with the power of 6 giving the best adjusted R2 result (0.716). For consis-

tency, and given the fact that the 6th degree polynomial was marginally higher than

the 5th degree polynomial (0.715), it was decided to continue the calibration process

using the 5th degree polynomial for the time of day variable. Further comparison

of adjusted R2 values with multiplicative combinations of time of day and single

weather parameters identified the temperature parameter as providing the best fit,

with a value of 0.731.
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9.3.3 Naive Forecast Model

In addition to the previous two aggregate activity forecast models which imple-

mented existing and novel datasets to predict current activity, a naive forecasting

model was also implemented. The naive model made use of the temporal nature

of input datasets, providing predictions for each quarter-hour period based on the

value of the previous quarter-hour period. Essentially, for each time step, the naive

model assumed that the forecast value would stay the same as was it was when it

was last reported. This approach was applied to both SocM and WiFi data. Due to

its heuristic nature, no calibration was necessary for this model approach. The naive

forecast model implementation for WiFi connections for a sample day is illustrated

in Figure 9.13.

Figure 9.13: Naive Forecast Model for 2016/03/14. Blue points mark the observed values,
red points mark the predicted values (equal to the previous timestep’s observed
value), black lines mark the error between observed and predicted value.

9.4 Spatial Disaggregation Model

The next step in the overall real-time park activity model involves the disaggrega-

tion of total activity into individual visitors, accurately dispersed in space. This

was performed using the ABM of PSA presented in chapter 7: Modelling Spatial

Behaviour, and is the same model applied in CS1:HyP. This section will discuss

the ABM applied in QEOP. It will focus on two points: First, a discussion on the
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generation of the 3D environment for the model will be presented, covering the pro-

cess used here as well as potential alternatives and the reasons they were discarded.

Second, the calibration process of the ABM itself in the context of QEOP will be

discussed.

9.4.1 Virtual Environment

As has been discussed extensively in this work, it is important to include the third

dimension as a core element of the models developed here. Due to the applica-

tion scale and scope, which focus on crowd spatial behaviour at the human scale,

environmental characteristics of volume and shape can have a significant effect on

model behaviour, considering for example the effect that aspects such as slope and

line of sight can have on human spatial interaction. With this in mind, it was de-

cided that a virtual model of QEOP would need to adequately capture the spatial

characteristics of the area, and therefore a 3D virtual model would need to be used.

9.4.1.1 Procedural 3D Environment Generation

Initially, the use of existing 3D models was considered and potential alternatives

were explored. In contrast to CS1:HyP where no existing 3D models of Hyde Park

were available at the time of development, during the development of CS2:QEOP

a potential source of 3D geometry was identified in procedural environment gen-

eration tools. These tools and platforms make use of the extensive Volunteered

Geospatial Information (VGI) and web-mapping technologies currently available,

and provide detailed 3D models of potentially any place on earth. Furthermore,

various extensions and libraries exist which allow for quick implementation of 3D

environment generation tools in multiple development platforms.

Three such services were identified that were of relevance to QEOP: WRLD1, Map-

box2, and Mantle3. All three provide tools for the procedural generation of 3D

1https://wrld3d.com/
2https://www.mapbox.com/
3https://www.mantle.tech/
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environments, and furthermore all three are available as a package for the develop-

ment platform used for the ABM here (Unity4). The Unity versions for Mapbox and

WRLD were further examined as to their viability for generating the environment

for QEOP. A bird’s eye view of the resulting geometry from each package can be

seen in Figure 9.14.

(a) QEOP in Mapbox (b) QEOP in WRLD

Figure 9.14: Procedural Generation of QEOP Environment.

On first inspection, both packages seem to provide good quality results, with contin-

uous terrain geometry, and roads, buildings, and features as individual objects. One

primary difference between the two services is regarding the underlying dataset each

uses, as Mapbox makes use of open data (from OpenStreetMap (OSM)), whereas

WRLD uses a set of proprietary and open data sources (for London these include

the Ordnance Survey and OSM, along with data submitted by users/customers of

the service). This is further evident in the richness of each result, where WRLD

appears to have many more features, whereas further geometry features in Mapbox

are available by extending the request ( 9.14a shows a result of the default request

settings).

On closer inspection however (Figure 9.15), major issues were identified with each

service. In WRLD’s case, its data acquisition process appears to make it difficult

(or at least slow) to update the underlying dataset: for QEOP, the generated en-

vironment appears to be a (highly accurate) representation of the state of the park

during the Olympic Games in 2012 (5 years out of date at the time of writing), and

furthermore its use of proprietary datasets makes it impossible for a user to change
4https://unity3d.com/
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(a) QEOP in Mapbox - Detail (b) QEOP in WRLD - Detail

Figure 9.15: Procedural Generation of QEOP Environment - Detail.

an element directly (in contrast to using OSM data, which is open to editing for any

registered user). In the case of Mapbox, although 3D geometry is generated with

adequate detail in terms of features and recentness, it appears to be lacking in terrain

fidelity, with the ground appearing to be almost flat, which in the case of QEOP is

not, as the terrain presents an interesting relief, and is one of the main spatial in-

terests of this case study. Therefore, for the reasons discussed here, it was decided

that no existing procedural environment generation solution provided an adequate

immediate result for the purposes of this study.

9.4.1.2 Virtual Environment Generation Process

Given that no procedural environment generation tool provided adequate results, it

was decided that the QEOP virtual environment would be created manually. The

model was created using data from using data from the UK Ordnance Survey and

OSM, specifically the OS Terrain 5 DTM (Ordnance Survey Digimap Licence),

and the OSM geodatabase (©OpenStreetMap contributors). The OS Digital Terrain

Model (DTM) was used to generate the terrain elevation. The OSM geodatabase

was used for a range of elements: line geometry for paths, polygon geometry for

river boundaries, and point and polygon geometry for trees and wood areas. The

3D model was created using a series of software: QGIS, Autodesk 3DS Max, and

finally Unity.
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As a first step, the DTM raster files ( 9.16a) were imported into 3DS Max as

grayscale heightmaps using a macro script5. Using image brightness values as

height, a mesh was generated, and further optimized to reduce the number of poly-

gons, using Delaunay Triangulation ( 9.16b). The resulting mesh ( 9.16c) was used

as the base layer onto which the rest of the geometry was projected and created

from.

The next step involved the creation of path and river geometry. This was achieved

using a ’cookie cutter’ approach in 3DS Max: First, river bank geometry was ex-

tracted directly from the OSM geodatabase, and path geometry with path widths

was similarly extracted using Mapbox. Second, the geometries were converted into

closed polylines (polylines with no open ends, essentially a boundary line). Third,

the polylines were projected onto the terrain mesh along the vertical axis, leaving an

exact imprint. Finally, the interior mesh as defined by the imprint was cut and ex-

tracted as a separate object. An example of the closed polylines, mesh, and resulting

path geometry can be seen in Figure 9.17.

After creating the terrain and path geometries, the 3D model was imported into

Unity for final adjustments and use. Bridges were manually placed in Unity to con-

nect the land masses between rivers, gate locations were decided based on visits and

official maps6, and trees were positioned in the park. Tree locations were calculated

using the same procedure as in CS1:HyP outlined in section A.5. The individual

layers along with the final model can be seen in Figure 9.18.

9.4.2 Model Calibration

After establishing a working virtual environment, the implementation of the SDM

and simulation of visitor activity becomes possible. This was performed via an

ABM of park visitor activity. Model mechanics have been described at length, first

5script and directions found here: https://knowledge.autodesk.com/search-
result/caas/sfdcarticles/sfdcarticles/Using-GeoTIFF-files-in-3ds-Max-and-Autodesk-VIZ.html
(accessed 2017/09/01)

6http://www.queenelizabetholympicpark.co.uk/the-park/plan-your-visit/park-map (accessed
2017/09/01)
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(a) QEOP DTM

(b) Terrain Mesh Wireframe (3DS Max) (c) Terrain Mesh Surface (3DS Max)

Figure 9.16: Terrain Mesh Generation - QEOP

presented in chapter 7, and again applied in CS1:HyP (chapter 8). This section will

focus on the ABM calibration process aimed at identifying the model parameters

that best capture and recreate visitor activity in QEOP.

The calibration process was performed against visitor location data captured via

site survey (Figure9.8b). Multiple values were tested for each parameter, by it-

eratively running the simulation while tweaking one parameter at each run, and
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Figure 9.17: Path Geometry Creation - QEOP

recording model error at each iteration. Each calibration run was left to execute

for 5000 frames with a fixed population of 1000 agents, corresponding to approxi-

mately 1700 park visitors, roughly similar to the 1480 visitors recorded on the day

of the survey.

For the purposes of recording model error at each run, an error measure was devel-

oped which captured the average mean relative percentage error. It is a simplified

version of the Expanding Cell Validation Method (Malleson et al., 2010), operat-

ing at a fixed grid size. For a set of locations y, the error between observed yi and

simulated y
′
i values at each location i is measured as

εi =

∣∣∣∣∣ yi

∑ y
− y

′
i

∑ y′

∣∣∣∣∣
The mean of all relative percentage errors from all locations for a specific timestep

t was considered to be the model Mean Relative Percentage Error (MRPE) for that

timestep, so that

MRPEt =
∑i εi

nl

where nl is the number of locations. Model MRPE was captured at regular intervals

(for a total of nt recordings) during the calibration run, and a final average score of
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Figure 9.18: QEOP 3D Environment in Unity

all MRPEs of a particular run was considered to be the error measure for that run:

MRPE =
∑t MRPEt

nt

For a given parameter set, the model was run twice, and the final score was calcu-

lated as the average of the two runs.

For the calculation of the error in the model, a square grid with cell size of 100m

was generated so that it covered the entire case study area. The grid cell centroid
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Figure 9.19: QEOP ABM Calibration Grid

coordinates were then extracted (Figure 9.19), and imported into Unity to be used as

sampling locations. In the simulation environment in Unity, grid cell locations that

did not overlap with the case study area were filtered out. Each of the remaining

locations was set up to capture simulated activity and compare it to observed activity

(Figure 9.20).

Figure 9.20: QEOP ABM Calibration Grid in Runtime. Blue colored bars highlight ob-
served activity, red bars capture simulated activity.

During simulation runtime, current model performance was visually verified via a

visualisation grid corresponding to the grid cell locations, set to visualise current er-

ror values. The points were set up to differentiate between model over- and under-
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estimation using color. Error magnitude was communicated using color opacity

and bar height, the former constrained to a range between 0%-10%, the latter un-

constrained (Figure 9.21). Using this convention, where no bars are visible, the

measured error value at that area is near zero, and therefore the model is accurately

capturing activity at that location.

Figure 9.21: QEOP ABM Error Visualisation in Runtime. Red bars signify model over-
estimation, blue bars signify model underestimation. Bar height and opacity
signify error magnitude.

The particular model parameters that required calibration in this case study were

the gate weights, and the individual agent activity probabilities concerning the three

main activities (Sit, Feature Visit, and Sports). For the first calibration run, in order

to provide a baseline, no parameters were included, so that the model ran with all

gates having equal probabilities to spawn an agent, and the agents only performed

movement activities (Sit, Feature Visit, and Sports probabilities were set to zero).

This produced an error score of 0.95%. The second run aimed to determine the

effectiveness of gate weight inclusion, by adding attractors to each gate in the model

derived from pedestrian traffic flow at each gate, as captured via CCTV. The specific

values used are the ones shown in Table 9.3 and Figure 9.9. This resulted in a score

of 0.89%, establishing the importance of gate preference for agents. The full list of

calibration run scores can be seen in Table 9.6.
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Model Parameters Average MRPE
noParameters 0.95%
withGateWeights 0.89%

Sit60 0.88%
Feat60 0.50%
Sport60 1.23%

Sit20Feat20Sport20 0.70%

Sit30Feat30 0.51%
Sit30Sports30 1.05%
Feat30Sports30 0.76%

Sit20Feat30Sports10 0.56%
Sit30Feat20Sports10 0.63%

Sit20Feat40 0.47%
Sit40Feat20 0.55%

Sit15Feat40Sports05 0.49%

Table 9.6: QEOP Calibration Error Scores. Outliers are highlighted in bold, final parameter
set is underlined.

The following calibration runs aimed to determine the particular probabilities for

each agent activity type, and were all performed with gate weights enabled. From

site surveys it was established that approximately 60% of recorded visitors were

engaged in stationary activities, and therefore this was set to be the sum of all ac-

tivity probabilities, so that approximately 60% of the agents in the model would

be engaged in stationary activities at any point in the simulation. The initial set of

model runs involved each individual activity being the sole activity for a particular

run, and revealed that Feature Visits were the activity that provided the best fit, fol-

lowed by Sitting and Sports activities in that order. This is not surprising, as during

the site visits, the most crowded locations were the fixed-location restaurants, water

fountain, and playground areas. Arguably, a majority of park users in QEOP visit

the park for these specific locations, and can therefore be considered as fixed attrac-

tors in the area, set to attract agents to those particular locations, rather than letting
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overall activity emerge procedurally. Through trial and error, it was determined

that a mix of 20% sitting activities and 40% feature visits provided the best result.

However a different parameter set was ultimately used (Sit 15%, Feature Visit 40%,

Sports 5%). The reason for this choice is that during the site visits, sports activities

were indeed spotted in all surveys (although not captured as such, only recorded

as stationary/sitting activities), and therefore it was decided that sports activities

should be included in the model.

9.5 Evaluation

At this point, all necessary components for the real-time simulation of park visitor

activity in QEOP have been presented. Multiple forecast models have been devel-

oped that can provide continuous, short-term predictions of current and near-future

overall activity in the park, using real-time Social Media (SocM), WiFi, and weather

data as input. Additionally, a Spatial Disaggregation Model (SDM) of park activity

has been developed and calibrated to capture individual visitor activity in QEOP,

by implementing the ABM discussed in chapter 7. For the overall real-time model

of visitor activity in QEOP, these two sub-models were combined so that forecasts

were fed into the SDM, which then disaggregated those values into individual visi-

tor activity in the park throughout the day.

In the following section the evaluation of all real-time modelling methodologies ap-

plied in CS2:QEOP will be presented. Evaluation was performed at two levels: first

at the sub-model level, and subsequently at the overall level. At the sub-model level,

the forecast model and the SDM were independently validated to ensure that they

were working as expected. The evaluation process for both sub-models was simi-

lar to the evaluation applied in CS1:HyP. At the overall level, the full Agent-Based

Model of Real-Time, Public Space Activity was evaluated in its entirety. This evalu-

ation process was performed against novel datasets (specifically WiFi connectivity

data) which was not available in CS1:HyP.
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9.5.1 Forecast Model Evaluation

The forecast models developed in this case study and discussed in section 9.3 in-

cluded two approaches, a linear model using weather conditions as predictors and

a naive model, incorporating two different datasets (SocM and WiFi), for a total of

four models. Evaluation for all approaches was performed against subsets of the

complete datasets kept separate specifically for validation purposes, and included

six days in March 2016. Using each forecast model, a set of values was calculated

for each validation date for the full day, at a quarter-hour resolution (96 predictions

per day per model). The predicted values were then compared against recorded val-

ues for that date and time, and an error score was calculated using the symmetric

mean absolute percentage error (sMAPE) metric. A percentage error was chosen

here to enable comparison between datasets of different sizes. A full set of error

statistics and error plots is offered in Appendices C.2, C.3, C.4, and C.5.

Date SocM-Weather WiFi-Weather SocM Naive WiFi Naive
2016/03/03 76.48% 31.91% 8.59% 6.89%
2016/03/07 32.84% 30.09% 10.26% 6.89%
2016/03/13 58.10% 43.76% 9.78% 7.66%
2016/03/18 46.08% 34.10% 15.88% 4.40%
2016/03/22 39.85% 44.60% 10.92% 7.66%
2016/03/29 49.32% 35.82% 16.54% 6.38%

Table 9.7: Forecast Models Validation for CS2:QEOP - sMAPE Values

As can be seen in Table 9.7, the naive model outperformed the linear models by a

large margin across both datasets. Multiple reasons for this have been identified:

Regarding SocM data, as has been discussed already, in the case of QEOP overall

data volume is quite low, with instances were no SocM events are recorded even at

busy times, and with no apparent dominant daily patterns. It was therefore expected

that this method would not perform adequately. Regarding WiFi data, although the

dataset demonstrates some degree of consistency across different days, total sam-

ple size was small (31 days), and therefore the forecast model was not adequately

calibrated.
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(a) SocM-Weather (b) WiFi-Weather

(c) SocM Naive (d) WiFi Naive

Figure 9.22: QEOP Activity Forecasts for 2016/03/18

In contrast, the naive model performed better due to the temporal fidelity of the

dataset (quarter-hour records) which has been found to be well under the average

park visit duration, and therefore values are not expected to change drastically be-

tween consecutive time-steps. A comparison between the four different forecast

models for a sample day (2016/03/18) can be seen in Figure 9.22.

9.5.2 Spatial Disaggregation Model Evaluation

The Spatial Disaggregation Model (SDM) used in this case study implemented an

ABM of park visitor activity, and was calibrated to capture activity in QEOP using

actual visitor locations and activities captured via site survey. An evaluation of

the accuracy of its spatial disaggregation was performed against a different visitor

activity dataset captured at a different time. The evaluation process did not aim to
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measure temporal accuracy or overall aggregate activity (these aspects are outside

the scope of the SDM, and were captured in the forecast models), but rather to

measure only the degree to which the ABM dispersed activity accurately throughout

the park. For the synthetic population the model was run for a complete simulated

day, and a record of all agent locations and activities was captured at a point in time

when total agent population was comparable to visitor volume during the validation

site survey dataset.

(a) Simulated (1197 agents) (b) Recorded (1520 visitors)

Figure 9.23: QEOP ABM Activity Heatmaps

An initial visual comparison of SDM results and actual activity can be seen in Fig-

ure 9.23, which demonstrates that the model accurately has generally succeeded in

capturing the major hotspot locations. Some locations have been misrepresented in

the model, and these have been marked in the figures ( 9.23a and 9.23b). More

specifically, in location 1, the model has overestimated the amount of visitors cross-

ing a bridge in the north part of the park, although it has not overestimated activity

taking place at either side of the river at that point, but rather just the crossing of

the river. In location 2, the model has extended the simulated activity further to the

south than observed activity. Location 3 marks the most popular entrance to the

park by far, arriving from the nearby shopping centre and train and underground

stations, where activity has been extremely underestimated in the model. This is

due to the fact that the particular location has been marked as an entry/exit point

in the model, i.e. it is the location at which agents spawn and are removed. Given

that agents do not begin their lifetime in the simulation in a stationary activity, it is
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more than likely that they will have moved from that area by the time they engage in

their first stationary activity. In contrast, actual visitors have already walked some

distance from the shopping centre by the time they arrive at this location, and are

more likely to rest before continuing in the park.

Apart from the 3 locations noted here, the model accurately captures the distribution

of activity. To measure model accuracy, the Expanding Cell Validation Method

was implemented. A grid was generated that completely covered all of the data

points. It was then duplicated and moved 25% of a cell length in each of the cardinal

directions, so that a total of 5 grids were created. The number of agents and visitors

in each grid cell was counted as a percentage of the total population size for the

respective dataset, and the difference between relative counts was calculated as the

relative percentage error of each cell. Finally, the mean of all cell error values was

captured as the overall Mean Relative Percentage Error (MRPE). This process was

performed for multiple grid cell sizes, to see how the model performs at different

scales, with grid cell sizes ranging from 0.61ha to 137.4ha, the latter completely

containing all of the data points in a single cell. The code used to generate the grids

and calculate the cell error is presented in Appendix A.5.2. A graph of MRPE at

different measuring scales can be seen in Figure 9.24a, and the spread of cell error

values by measuring scale is presented in Figure 9.24b.

As can be seen in in the error graph and plots of the error grids (Figure 9.25), error

magnitude correlates with grid size. Similar to CS1:HyP, the validation scale for

the model was defined by the observation scale of the site survey data, and so a grid

cell size of 2.8ha was chosen as the cell size best matching an observation area of

3.14ha (as derived from a search radius of 100m). The validation grid is shown in

Figure 9.25, and it can be seen that at this scale, it highlights the areas discussed

previously (Figure 9.23), with a MRPE of 0.8% and a maximum relative error of

11.26%.



9.5. EVALUATION 285

(a) MRPE by Subdivisions of Validation Grid

(b) Cell Error Distribution at Measuring Scale

Figure 9.24: QEOP ABM Spatial Error at Measuring Scale

Figure 9.25: QEOP ABM Spatial Validation. Error is measured as the difference between
proportional grid counts (recorded− simulated). Red hues show model over-
estimation, blue hues show model underestimation.
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9.5.3 Overall Model Evaluation

In addition to evaluating the individual components of the real-time modelling

methodologies, CS2:QEOP aimed at evaluating the overall real-time model as well.

This step investigated the accuracy of predicted spatial distribution of activity in

QEOP at specific times, in other words it aimed to evaluate the full spatio-temporal

properties of the real-time ABM developed in this work.

This validation step was not possible in CS1:HyP due to dataset limitations, as

real-time data on visitor activity in CS1:HyP was captured via SocM, which did not

include detailed spatial information. For CS2:QEOP, the WiFi dataset provided this

potential, as wireless connectivity records include spatial information as well. This

spatial information comes through appending to the dataset the individual access

point which recorded an event, whose locations are known beforehand. Further-

more, the access points have a stated effective range of approximately 100 meters,

and therefore it is possible to infer spatial activity in the area around each access

point by the number of recent events recorded at that point.

Figure 9.26: QEOP Simulated Visitor Locations (red) and WiFi Access Point Locations
(blue)

As a first step in the evaluation of the overall real-time model, model results were

matched in form to the validation dataset, to enable comparison. This was done by

running the simulation for a full simulated day and extracting the locations of all
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agents at the specific point in time that constitutes the selected validation datetime.

These agent locations were then appended to the location of the closest access point

(Figure 9.26), and the sum of all connections at each access point was counted as the

simulated population at each access point. This value was compared to the hourly

count of recorded WiFi events at each access point, considered here as the observed

population. A visual comparison is presented in Figure 9.27.

(a) Simulated (1130 agents) (b) Recorded (1900 connections)

Figure 9.27: QEOP Activity Heatmaps at Access Points (2016/03/18 14:30)

It is evident from the heatmaps that model results do not correlate with WiFi connec-

tivity records. In the simulation, connections at crowded areas are evenly distributed

across all access points close to any area, whereas in the observations dataset most

connections are recorded at only a handful of access points. Indeed, looking at the

residuals plot of connections at access points (Figure 9.28), a single access point

has 412 recorded connections (approximately a quarter of the total). However even

disregarding that particular data point, it is evident that the simulation and observa-

tion data points do not correlate, as is confirmed when calculating the error statistics

for the two datasets (Table 9.8).

Datetime R2 MAE RMSE sMAPE
2016/03/18 14:30 0.0163 25.83099 52.82312 55.32%

Table 9.8: QEOP Overall Model Error

Multiple reasons for this disagreement between simulated and observed results are

considered. Regarding the assumptions in the preparation of the simulated dataset:
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(a) Residuals - Full Range (b) Residuals - Constrained Range

Figure 9.28: QEOP Real-Time Model Results - Residuals Plot

the nearest neighbor method was used for aggregating agent locations to access

points, which might differ from the way wireless networked devices connect to an

access point. Regarding the validation dataset itself: A number of discrepancies

were identified in the WiFi dataset, both to itself and to other data collected for the

area. First, there is inconsistency between visitor activity recorded via site surveys

(Figure 9.8) and activity recorded at access points (Figure 9.27); although both maps

highlight the same locations, in the WiFi connectivity dataset a single location is

over-represented. Second, the number of connections reported in the WiFi dataset

appears to be overestimating, as it is comparable and at many cases higher than the

number of people in the park, as recorded via site surveys. Further inspection of

the WiFi dataset indicates that multiple consecutive connection attempts are often

performed by the same device in a short duration at the same location (potentially

while the device is negotiating connection to the network), therefore inflating the

reported events at access points. Further to that, many connection sessions do not

end with a final disconnect event to signal the definitive end of the session, meaning

that it is not possible to attach beginning and end time to a session and thus calculate

whether a device was actually in the park at a given point in time (and therefore more

accurately calculate the total number and locations of devices in the park at a given

point in time). For the reasons discussed here, it was decided that the WiFi dataset

as was made available was lacking in veracity, and could not be used as a proxy for
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visitor activity in real-time.

9.6 Summary

CS2:QEOP proved to be a successful case study overall concerning its exploratory

elements. However, during the incorporation and subsequent testing of existing and

novel datasets, some of them were found to be inadequate for the purposes of this

work, at least during the time this research was conducted. Specifically, two of the

initial aims were not achieved, due to limitations in the datasets: inferring real-time

overall activity via SocM datasets, and obtaining a reliable high fidelity indicator of

activity via a novel exclusive dataset (WiFi). All other objectives are considered to

have been successful. More specifically, revisiting the case study aims as defined in

the beginning of this chapter:

1. Validation of CS1:HyP methodologies. The successful Real-Time Public

Space Activity Modelling approaches developed in CS1:HyP were applied

again in CS2:QEOP to explore their validity. These were: capturing of SocM

and weather data in real-time, estimating total visitor activity in the park, spa-

tially disaggregating total activity using an ABM, and evaluating aggregate

activity forecast and SDM. SocM adn weather data collection was performed

successfully, however the returned volume of SocM activity was quite low,

to the degree that forecasting activity was not feasible. This was made evi-

dent by successfully implementing an evaluation analysis similar to the one in

CS1:HyP, which illustrated high error scores compared to CS1:HyP and other

forecast approaches. The SDM was successfully implemented and calibrated

to capture activity in QEOP, and the evaluation process using the Expanding

Cell Validation Method further highlighted some interesting aspects of the

spatial characteristics and clustering of activity in QEOP.

2. Exploration of the potential of novel datasets. CS2:QEOP made use of

some exclusive datasets to capture activity in real-time, namely wireless con-
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nections to the park’s WiFi network. This dataset was successfully used to

forecast overall activity in cases where forecasts using SocM were infeasible.

At finer scales however (both temporal and spatial), issues with the veracity

of the dataset became apparent, as the way data was recorded made it infea-

sible to infer the number of visitors in the park. Nevertheless, this was found

to be not an issue with the dataset and the overall approach itself, but rather

with the way data is stored at the moment, and with some changes it could

indeed prove to be a useful tool for real-time crowd dynamic monitoring.

3. Verification of PSA ABM capabilities in more complex environments.

The ABM used to simulate individual visitor activity in QEOP was overall

successfully implemented in CS2:QEOP. The more elaborate geometries and

landscape presented by QEOP were successfully handled by the ABM.



Chapter 10

Discussion on Case Studies

This chapter is devoted to a detailed discussion of results and findings around all

areas of interest of this work, as identified through their application in the two case

studies. Although some comments have been offered already regarding datasets,

methodologies, and results in the two previous chapters, an in-depth discussion was

deliberately withheld until this point. The reason for this was to discuss and review

the findings not in the context of each particular area or case study, but rather in

light of the endeavour to develop Real-Time Simulations of Public Space Activity,

which is the overarching aim of this work. Furthermore, it was deemed necessary to

discuss not only the results from the studies, but the methodologies and processes

of the studies themselves. As such, this chapter will discuss overall results and

findings of this work, grouped by appropriate thematic: Real-Time Data, Agent-

Based Models of Public Space Activity, Real-Time Simulations of Public Spaces,

and finally the case studies themselves.

The chapter begins (section 10.1) with a discussion on Real-Time Data (RTD), an

essential component of Real-Time Simulations, as it was encountered in this work.

This section will conclude the RTD thread running throughout this thesis, which

was first introduced and defined in chapter 4, placed within the real-time modelling

framework in chapter 5, captured in chapter 6, and applied in the two case studies

(chapter 8 and chapter 9). Aspects of availability will be discussed first, as this was
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established as a main characteristic of RTD (section 4.3). The informative power

of the different datasets used in this work will also be discussed, considered here

as their potential in capturing Public Space Activity (PSA), along with issues when

used in real-time forecasting.

The next section (section 10.2) will discuss the models developed here that cap-

ture human activity in public spaces. It offers a conclusion on the remaining two

conceptual threads of this work, the use of public space, and Agent-Based Models

(ABMs), developed throughout this thesis in chapter 2, chapter 3, and chapter 7.

This section will discuss models both in terms of behavioural rules and heuristics

that formulated the final models, as well as model performance.

Concerning the real-time nature of this work, section 10.3 discusses findings relat-

ing to the overall development of Real-Time Simulations of Public Space. It will

reflect on the methodologies developed here regarding their overall validity, and

will furthermore consider their limitations and extensibility.

Finally, section 10.4 will discuss the case studies themselves. The focus here is on

highlighting problems, findings, and potentials regarding the methodology and its

application to a real-world examples, as identified through the course of the two

case studies, Case Study 1: Hyde Park (CS1:HyP) and Case Study 2: Queen Eliz-

abeth Olympic Park (CS2:QEOP). It will discuss the rationale behind area choice,

characteristics of each area, as well as activities observed in each area, and will re-

flect and review on how all these aspects affected or were captured in the simulation

of each space.

10.1 On Real-Time Data

This first section will focus exclusively on the Real-Time datasets used in this work.

It presents a discussion on their primary properties, as well as any analytical work

that stemmed directly and exclusively from the real-time nature of the datasets, in

other words this section discusses the merits of RTD regarding their Real-Time na-
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ture. This work explored the potential of multiple datasets, over a large period of

time, gathering a year’s worth of data. An overall tendency of this work is acknowl-

edged here, in leaning towards the open and publicly available end of the spectrum

of data availability.

10.1.1 On Data Availability and Informative Potential

As was established in the review of Real-Time Data (RTD) (chapter 4), two main

characteristics have been identified regarding the nature of RTD: Temporality, and

Accessibility. Temporality, or the time difference between an event taking place and

the data point capturing it being generated and stored, was considered to be a given

for any dataset used in this work, and will not be discussed here. Accessibility on

the other hand (and subsequently reliability) was found to be equally as important

to RTD, since if a dataset is not made available as soon as it is captured (for any

reason), then it can no longer be considered as real-time. Therefore, a discussion on

dataset availability will be presented here, for all real-time datasets ultimately used

in the two case studies.

Publicly available datasets were found to be varied in terms of availability: So-

cial Media (SocM) data was consistently available and reliably captured (barring

some instances of script execution failure on the part of the researcher), up until

drastic/important changes in some data sources’ Application Programming Inter-

face (API) terms and conditions made data capturing impossible, and in other cases

changes in the API made it difficult to consistently capture data in an automated

fashion. Weather data was found to be consistently available. Finally, the exclu-

sive dataset tested here (WiFi) consisted of sample data, covering non-consecutive

months, and was made available after said periods, i.e. was not real-time under the

definition used here (’RT-pub’, as defined in section 4.1).

As can be seen in Figure 10.1, only two datasets proved to be reliably available

throughout the duration of this work: Weather data, and Twitter data. Furthermore,

there appears to be a correlation between the openness of the dataset (ranked based
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Figure 10.1: Real-Time Dataset Availability, by Dataset

on the Open data Institute’s definitions, see Broad, 2015), and its overall real-time

availability, at least for the datasets examined here. Weather data was sourced from

services1 (for ease of access) which themselves aggregate from multiple open and

publicly available meteorological services, and is considered if not open, at the

very least publicly shared data. SocM data (Twitter and Instagram) was considered

as attribute-based access shared data, and therefore constrained access, given the

requirements of setting up a developer account at each platform and fulfilling cri-

teria regarding data collection. Finally, WiFi data was considered as named access

shared data, as it was shared to specific researchers by the data provider themselves.

Given the potential ubiquity of the various datasets originally considered in this

work, the overall informative potential of each dataset was also taken into con-

sideration, meaning the potential each dataset had at capturing multiple aspects of

the system being examined. For this reason, in addition to the temporal aspect of

RTD, which was considered a given, the inclusion of any spatial information in the

datasets was also considered, for capturing the distribution of activity in the areas

of interest via proxy. At the conclusion of this work, no single dataset was found

to fully exhibit both spatial and temporal aspects at an adequate degree to be used

in real-time simulations of PSA. Most datasets (Weather, SocM, WiFi) provided

data in a streaming fashion with timestamps, and therefore had a strong tempo-

1darksky.net
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ral presence, however, all of them lacked high-fidelity spatial information. More

specifically, spatial variation in weather conditions was meaningless at the scale of

observation. SocM data sources aggregated the data point location to the nearest

significant location (as delivered through their respective APIs, e.g. Twitter often

appended tweets originating from Hyde Park to the centre of the park regardless of

original geolocation), and therefore lacked spatial fidelity. Finally, WiFi data did

include spatial information at adequate detail, by recording the access point ID (of

which the locations were known) for each event, however the dataset proved to be

too noisy to use effectively.

10.1.2 On Modelling & Forecasting Capabilities of RTD

As was expected due to the statistical nature of the forecast models developed here,

forecasting using RTD is more accurate when high volume datasets are available.

This was observed in the two case studies as well, when comparing SocM data in

each: the large volume of SocM data in CS1:HyP made forecasting using a Gener-

alized Linear Model (GLM) possible, whereas in CS2:QEOP overall SocM volume

in the park was low, and as a result there was much more noise, making it impossi-

ble to forecast accurately (Figure 10.2). Comparing the two case studies then, and

considering CS1:HyP as a successful implementation of a real-time forecast model

using SocM, some minimum values of SocM activity for forecasting PSA can be

estimated: a daily average of 31.80 SocM per 15 minutes, with a consistent peak

hours average of approximately 50 SocM per 15 minutes.

CS2:QEOP highlighted another important aspect of forecasting RTD pertaining to

human activity at short intervals: Naive forecast models proved to be much more

accurate compared to linear regression models. This is attributed to the ephemeral

nature of the spaces examined here, which can exhibit rapid changes in volume of

activity during a short time, as well as the quality of the datasets, which might in-

troduce a significant amount of noise. However, even though naive models seem

to outperform more formalized models, a note needs to be made here regarding the
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Figure 10.2: Dataset Volume Comparison

nature of both approaches: naive forecast models such as the one implemented in

CS2:QEOP require RTD as input to produce any output. In other words, naive mod-

els are reliant on a constant stream of data that delivers the ’predicted’ variable at a

delay of one timestep, and are therefore reliant on a single point of failure. As has

been presented, this stability in data availability is not guaranteed, at least for the

time being, and at least for the datasets examined in this work. Additionally, naive

models introduce inherent error, by definition. GLMs (or other correlation-driven

forecast models) on the other hand have the potential to provide more accurate re-

sults, given good-quality calibration data. Furthermore, as they rely on predictive

input variables to output predicted values (e.g. SocM-weather correlation in this

work), they can still function in cases where predicted data is missing, in the case

of an outage for example, as long as the predictive datasets are fairly reliable (as
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seen in this work in the case of weather data, compared to SocM data). Regarding

then the overall forecasting capabilities of RTD as seen in the two case studies, this

work concludes that at this point, RTD does not seem to hold adequate veracity as

a whole to support meaningful, reliable short-term continuous predictions on urban

public space activity at the scale of the individual.

10.2 On Agent-Based Models of Public Space Activ-

ity

One of the main research questions posed in this work was whether state of the art

tools could support the development of a perpetual, real-time simulation of a city’s

public spaces, one of the principal components of which is the human interaction

that takes place daily within them. In investigating this question, this work devel-

oped a modelling framework capable of capturing and simulating human activity in

public spaces using the Agent-Based Modelling paradigm, by translating the find-

ings of Public Space Use studies into behavioural rules. In this regard, one of the

aims of this work was to extend existing streetscape models (Torrens, 2016), i.e.

pedestrian and crowd movement ABMs, into parkscapes, ABMs capable of captur-

ing and simulating the wide range of activities taking place in public spaces. The

resulting model was applied in two real-world scenarios, and was found to be overall

successful. In this section, the specific shortcomings, limitations, and assumptions

that went into the development of this Agent-Based Model of Public Space Activity

will be discussed.

10.2.1 On Human Behavioural Characteristics

In developing the public space activity model, this work reviewed and codified ob-

servations on how people act and interact in public spaces (section 2.2, section 2.3,

chapter 7). During this process, a number of assumptions were made, that resulted
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in a simplified model of PSA2 regarding individuals’ behaviour. This simplified

approach was chosen for multiple reasons: First, this thesis followed a reductionist

approach, whereby a conscious attempt was made to apply simpler solutions where

possible, for a variety of reasons (model legibility and comprehension, verification

and validation, extensibility). Second, given the scale, size, and scope of the areas

studied here, it was assumed that a simplified model of human behaviour would be

more than adequate in capturing crowd dynamics. More specifically, as the Envi-

ronment/System scale is for a whole park, Agent/Component scale is the individual

visitor, and more importantly the objective of the model is to simulate overall dy-

namics, a simplified model would hold more explanatory value, and furthermore

could be calibrated using available data.

10.2.1.1 Evaluation of Movement Heuristics

Wayfinding and navigation was implemented using shortest-path algorithms and

angle-constrained random walks. These heuristics have been discussed to great

length in literature, argued for and against (as presented earlier, in subsubsec-

tion 2.2.1.1). Given the characteristics of the spaces chosen as case studies, in the

extent of this thesis the selected navigation algorithms are considered to adequately

represent the behaviour of the target population. More specifically, parks do not

attract overly intensive movement and transit activities, are in open environments,

without a particular goal/destination in place, therefore a wandering behaviour can

be assumed to capture the wayfinding behaviour of park visitors. Furthermore, due

to the mostly open terrain, visitors have an unobstructed view of their surroundings,

and therefore if a particular attractor/goal is identified, a direct path will almost cer-

tainly exist to that destination. In this regard, and according to relevant literature

(Gehl, 1987, Gärling and Gärling, 1988, Whyte, 1988, Bitgood and Dukes, 2006,

Jazwinski and Walcheski, 2011), the shortest-path algorithm appears to adequately

capture small scale path-planning in park visitors. However, wayfinding in this

2This was of course expected from the outset, as urban and spatial models constitute a simplifi-
cation of the system they represent (Batty, 2001).
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model can certainly be improved, at multiple scales. In the larger scale: extensive

discussions on path-planning are found in the fields of Psychology and Behavioural

Geography, where additional valid approaches and heuristics to human wayfinding

are presented (as listed e.g. in Spiers and Maguire, 2008). Such approaches can

certainly be tested in simulations and models as presented in this work, as their

implementation can provide a more realistic simulation of human wayfinding be-

haviour in open spaces. In the smaller scale: In this work, small scale movement

and crowd dynamics such as obstacle avoidance were largely unexamined. Recent

advances in computer vision research (Sprague et al., 2007, Ondej et al., 2010) and

in the simulation of locomotion dynamics such as inverse kinematics (Tolani et al.,

2000), as well as overall crowd pedestrian simulation (Guy et al., 2010, also see

overall field review in Torrens, 2016) can provide a clearer image of these aspects

of crowd interaction.

10.2.1.2 Evaluation of Social Interaction, Crowding, and Stationary

Activities

Regarding the implementation of crowding dynamics in stationary activities, in re-

lation to social interaction and crowding distances. The primary point to be made

here is certainly the inclusion of repelling activities. First discussed in Chapter

2: Understanding Public Space Use, it was considered that all social interac-

tion in public spaces is considered as a positive feedback interaction. Although

the opposite is known to happen as well, it was not included for brevity, as it has

been observed that social interaction is overwhelmingly a positive interaction (Ja-

cobs, 1961, Whyte, 1980, Gehl, 1987), even if considering the passive aspects (e.g.

people-watching).

Additional (short) discussion on potential model over-calibration, regarding fixed-

point attractors (’features’ in the ABM, used by agents when in a ’Feature Visit’

state). These elements in the model potentially introduce an ’over-fitting’ aspect,

as they constitute fixed points, known to attract large crowds in observed activity,
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and are included in the model explicitly by location. In other words, the model

predicts increased activity in a specific location by explicitly directing entities to

visit that location. On the other hand however, in both case studies, these fixed

locations of increased activity are known beforehand, and are expected to exhibit

increased activity, as they constitute main attractions in the area, and oftentimes

their existence relies on such increased activity (in most instances they were found

to be restaurants, or public discourse locations). It may be argued therefore that

they might indeed be an ’anomaly’ to the otherwise expected undisturbed activity

distribution, and their accurate simulation requires them being set explicitly.

10.2.2 On Agent-Based Model Performance

Model performance is considered here from two distinctly different perspectives:

First, on the model’s stated objective, and more specifically on whether the con-

ceptual model performed well in capturing individual park visitor behaviour, and

its implementation in simulating the distribution of activities in the area of interest.

Second, on how the model performed computationally, or whether this approach

constitutes a viable computational technique in simulating public space activity.

Although the two perspectives presented here can be considered independently,

they appear to be interconnected to some degree in the scope of the models de-

veloped here. This is due to one of the requirements set earlier in this work, of

developing models of human spatial behaviour capable of functioning in a fully

three-dimensional environment. Therefore, while the addition of the third dimen-

sion enables a more accurate representation of the space of interest, at the same time

it has a negative impact on the computational performance of the simulations.

Regarding the model’s computational performance, simulations were run on two

different PCs, one Alienware desktop machine3, and one MSI laptop machine4. A

pair of simulations of CS2:QEOP was run on each machine, with an increasing

population starting with 500, increasing by 500 at each controller update, with a

3CPU: i7 @3.00GHz, RAM: 32GB, GPU: 2x NVIDIA GTX980Ti
4CPU: i7 @2.40GHz, RAM: 8GB, GPU: NVIDIA GTX850M
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cap on 2000, and the delay between frames was recorded. Given that the model

is in a 3D environment, rendering poses a bottleneck; by disabling rendering, the

FPS noticeably improved in both machines. A comparison of model performance

between the two machines is shown in Figure 10.3.

Figure 10.3: ABM Computational Performance

Regarding the model’s performance on the stated objectives, results from the two

case studies suggest that the model performs well overall in capturing and simu-

lating public space activity. In both case studies, locations of the main hotspots

of activity were accurately predicted, as well as locations of minimal to no activ-

ity (”cold spots”), as can be seen in Figure 10.4. That said, the model exhibited

an overall tendency to under-represent the difference in activity volumes between

high and low activity locations, i.e. the model tended to under-represent hotspots

and over-represent cold spots. Over-representation of cold spots was attributed to

the stochastic nature of the model, which imbued agents with a random wander-

ing behaviour. Under-representation of hotspots was attributed to the fact that most

hotspots were identified as being features and attractions (e.g. restaurants, play-

grounds, etc.), which while included as a behaviour in the model, was not calibrated

for properly in terms of visitor volumes5.

Regarding the agent behavioural framework developed in the model, observations

5And was not meant to, as no dataset was found that captured equally and in detail visitor volumes
for all the different locations identified as features in the two areas.
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(a) HYP Weekday Activity Simulated (b) HYP Weekday Activity Observed

(c) HYP Sunday Activity Simulated (d) HYP Sunday Activity Observed

(e) QEOP Weekday Activity Simulated (f) QEOP Weekday Activity Observed

Figure 10.4: Case Study Heatmaps - Simulated vs Observed

and findings from a range of different studies of public space use were reviewed,

and as has been mentioned earlier, ultimately development settled on a straightfor-

ward classification of visitor activities into two broad categories, namely moving

and stationary activities. This was assumed to provide a good overall description

of activities with both brevity and detail when observed at the scale of a whole ur-
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ban park. Given the nature of the public spaces examined in this work, empirical

evidence suggested that: a. there would be people moving through them, as pub-

lic spaces are the de facto transit space, and b. there would most likely be people

engaged in stationary activities in them, as has been observed in previous studies

(Whyte, 1980; 1988, Gehl, 1987). This initial assumption on the broad classifica-

tion was confirmed in external surveys (Ipsos Mori, 2015b), which included a wide

variety of activities as the purpose of visit in park visitor responses, as well as site

surveys conducted in this work (section 8.2, section 9.2), which observed visitors

engaged in multiple types of activities, both involving movement and stationary,

including restaurant visits, sports, exercise, walks, among many others. All the

different activities were classified under the two general categories of ’moving/sta-

tionary’, as producing an exhaustive list of activities would require a quite lengthy

list, and furthermore would require extensive calibration in order to verify that they

accurately represented the actual activities taking place in the park. In addition, no

real-time dataset was found that tracked all of the individual visitors’ activities in

detail throughout their visit, and therefore the scope of potential activities could not

be identified.

One part in which the activity classification went into further detail however was

a sub-categorisation of stationary activities, into general sitting, sports, and fea-

ture/attraction visit. These three types were generally observed during visits in both

case study areas, and it was felt that they captured the full range of activities taking

place in a park, as each expressed different model mechanics which encompass a

range of specific activities. More specifically, feature visits stand for a direct and

purposeful route and stay at a specific and predefined location, do not necessarily

involve interaction between agents, involve minimal interaction between agent and

environment, and may include activities such as sitting at a restaurant/cafe, visiting

an event, visiting a tourist attraction/monument, etc. Sports activities stand for any

activity that requires a specific set of conditions be presented by the environment6,

6In this work the conditions were that an area was clear of obstacles such as trees and buildings,
was fairly level/did not have intense landscape, and was clear of paths
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and requires some interaction between agents, either attracting or repelling, based

on agent type. They are therefore not location specific, and agents could engage

in this type of activity at any location that fulfilled all conditions, they exhibited

therefore a foraging behaviour in looking for an appropriate location. Finally, gen-

eral sitting activities stand for all other stationary activities in public spaces, which

according to literature (Whyte, 1980; 1988, Gehl, 1987) are dependent on the ex-

istence of other agents in the area, and constitute positive-feedback loops in the

model.

Although not captured explicitly in the surveys, these activity types were observed

and therefore applied in the model under the assumption that given proper calibra-

tion, they would improve model accuracy. Indeed, as was shown in CS2:QEOP,

calibrating the probabilities for each resulted in a reduction of overall model er-

ror. Furthermore, the interaction between activity probability, activity duration, and

agent lifetime provided a large degree of agent heterogeneity, while keeping overall

activity type distribution within expected value ranges. As can be seen in Fig-

ure 10.5, for agents with similar lifespans, the respective activity profiles over time

differ greatly.

Figure 10.5: Heterogeneity in Agent Behaviour: Activities over Lifetime

A final point of discussion regarding the ABM developed here is to be made on its
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spatial dimensions aspect, as all agent behaviours developed in this model were

made to function in a fully three-dimensional environment. As has been dis-

cussed already, this introduced a disadvantage in terms of computational perfor-

mance, but offered increased detail and descriptive capability, compared to a two-

dimensional or pseudo-3D implementation. A 2D implementation for the agent

framework was considered, and indeed it would potentially have been more appli-

cable for CS1:HyP: Hyde Park does not exhibit any intense relief in terrain, and

all of its activity can be assumed to generally take place on flat terrain, therefore a

2D implementation would have been applicable and more computationally efficient.

CS2:QEOP on the other hand includes overlapping geometries, hills, and noticeable

terrain relief. Although activity could have been simulated in 2D, doing so would

have required a set of assumptions and abstractions regarding agent cognition and

behaviour regarding the third dimension.

It was decided that both case studies should be studied within the same simula-

tion framework. A three-dimensional implementation of the ABM was chosen, in

CS2:QEOP for necessity, in CS1:HyP for testing purposes, and more importantly on

both case studies, for reasons of descriptive capability: As has been discussed pre-

viously (Bonabeau, 2002), ABMs offer a natural description of a system composed

of individual entities. In the same mindset, it was decided that a full 3D represen-

tation of the environment and the subsequent integration of agent interaction within

this 3D environment would provide a more ”natural” and comprehensible simu-

lation of urban space, and it was believed that state of the art computer systems,

software, and development platforms were more than capable of supporting this.

Results from the second case study do indeed suggest that a 3D model performed

well in capturing activity in QEOP, and doing so did not introduce insurmountable

computational load, therefore suggesting a valid approach. This then enables the

simulation of a range of urban spaces which would not have been possible in a 2D

implementation, spaces exhibiting more complex design approaches diverging from

the archetypal open flat town square or plaza, often developed over multiple levels

(see for example Figure 10.6).
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(a) Southbank Centre, London (b) Park Guell, Barcelona

(c) Rockfeller Plaza, New York (d) Cabacera Park, Valencia

Figure 10.6: Multi-Level Urban Spaces

10.3 On Real-Time Simulations of Public Space Ac-

tivity

As has been stated multiple times in this thesis, the aim of this work is to develop a

Real-Time Simulation of Public Space Activity. When discussing the details of this

aim (section 5.1), three particular objectives were identified, that the underlying

model would need to achieve. Specifically, the model would need to:

1. Accurately predict the volume of human activity in a public urban space at

high temporal fidelity.

2. Accurately predict the types of activities taking place in a public urban space

and the locations of said activities.
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3. Perform the aforementioned predictions of activity concurrently with it hap-

pening, i.e. in Real-Time.

The first objective was achieved to some degree of accuracy. As was discussed ear-

lier in this chapter (section 10.1), this work investigated the potential of RTD in

continuously capturing and forecasting activity in public urban spaces. The investi-

gation focussed on forecasts at short time intervals of 15 minutes, and it was found

that under certain conditions (specifically given data stream consistency, availabil-

ity, and volume), overall aggregate activity in an area could be predicted using proxy

datasets.

The second objective is considered to have been largely achieved. The Agent-Based

Model (ABM) of Public Space Activity (PSA) developed in this work incorporated

human behavioural characteristics in public spaces as observed in public space use

studies, was calibrated to ground truth data, and was set up to run using input from

the aggregate activity forecast model. As discussed in section 10.2, the resulting

model was found to accurately capture the dispersion of activity in the areas of

study.

The third objective as a whole was tested against available datasets, with mixed re-

sults. More specifically: on the one hand, predicting aggregate activity in real-time

was conditionally successful dependent on data being available in large volumes,

as it was shown (CS2:QEOP) that smaller volumes introduce proportionately large

amounts of noise, thus reducing accuracy. On the other hand, predicting the spa-

tial distribution of activity in real-time was considered to not have been thoroughly

examined. More specifically, it was found to be possible, and indeed was imple-

mented with a Spatial Disaggregation Model (SDM) of activity running at 60 times

real-time speed, more than enough to continuously predict the spatial distribution of

activity in real-time. However, no real-time dataset was found that captured spatial

characteristics of park visitor activity at a fine spatio-temporal scale, and therefore

the SDM was not validated in real-time. For this reason the overall third objective is

not considered to have been answered adequately, as available datasets were found
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to be unable to support it.

10.4 On Case Study Areas and Findings

This section will focus on aspects relating to the two case studies themselves, in-

cluding their physical characteristics, findings, results, methodologies, and limita-

tions. As will be discussed later in more detail, the overall aim was to investigate

two similar cases, in order to minimize the effect of external variables, and allow

for meaningful interpretation and comparison of results between the two studies.

In addition to the many physical similarities of the two areas (both are public use

parks of comparable size, with similar features), the two case studies followed a

similar analytical methodology: ground truth data on visitor activity was collected

via site surveys, both studies implemented the same ABM to simulate visitor activ-

ity, and real-time forecasts of aggregate activity were performed using a GLM in

both cases. One major difference between the two cases relates to the data sources:

CS1:HyP was carried out with the additional limitation of employing only publicly

available datasets (Open Data and Public Access Shared Data in the Open Data In-

stitute’s terms (Broad, 2015)). CS2:QEOP employed data from all sources used in

CS1:HyP, as well as additional exclusive WiFi connectivity data.

10.4.1 On Area Choice

This work focussed exclusively on Public Space Activity (PSA) taking place in

parks allocated to public use. This choice of target areas for both case studies was

done deliberately, for a number of reasons, first the public nature of parks, and sec-

ond their openness of space. On the first point, the public nature of parks attracts

leisure activities, i.e. non-necessary activities, and therefore, park visitors can be

expected to be driven by their own preference, rather than obligation, for visiting

the space. Furthermore, the public nature of parks suggests that visitors look for, or

at the very least are aware of, the potential for social interaction with other park visi-

tors, even at the passive level of being in the same area with others. Therefore, given
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the public nature of parks, the overall activity observed in parks can be assumed to

be deriving from the ”attractiveness” or ”appropriateness” of specific locations for

specific activities, and from the interaction between visitors.

On the openness of park space, parks mostly offer a continuous plane for activ-

ity, which reinforces the element of interaction between visitors: often no divisions

or obstacles exist between two locations in a park, and therefore some degree of

spatial autocorrelation can be expected in the observed activity. Furthermore, the

continuous, open area of parks enables visitors to move in potentially any direction

without restriction. In contrast to parks, more urbanized plazas or even indoor areas

were originally considered as potential case study areas. However, urban areas of-

ten involve an important factor heavily affecting the movement of individuals, that

is the motorized traffic network, which is by itself a significant area of research. The

possibility of extending one case study to include urbanized areas or even focus it

completely on a fully urbanized location was considered, but ultimately it was de-

cided that the two case study areas would be too dissimilar to enable any meaningful

comparison. For the reasons discussed above, the two parks (Hyde Park (HyP) and

Queen Elizabeth Olympic Park (QEOP)) were chosen as the two case study areas.

10.4.2 On Physical Characteristics

Figure 8.1: Hyde Park (repeated from page
210)

Figure 9.1: Queen Elizabeth Olympic Park
(repeated from page 252)

As was mentioned, one of the aims in choosing appropriate locations for the case

studies was for them to be similar in enough aspects so that meaningful compari-
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son between results of the two could be performed. Therefore, in addition to their

similarity in use and function, both being public-facing parks that attract leisure

activities, the two case study locations share a range of additional, physical charac-

teristics. Regarding their basic characteristics, as can be seen in Table 10.1, the two

parks have comparable surface areas, however they differ in perimeter and shape, as

Hyde Park (HyP) is fairly compact, while Queen Elizabeth Olympic Park (QEOP)

presents a more elongated shape with a narrow pass at its middle (Figure 8.1, Fig-

ure 9.1).

Case Study Surface Area
(km2)

Perimeter
(km)

HyP 1.273 4.875
QEOP 0.9645 5.894

Table 10.1: Case Study Area Physical Characteristics

Further to basic physical characteristics, the two parks are similar in terms of fea-

tures found within them. First of all, both have significant bodies of water running

through them, although in the case of QEOP, the River Lea divides the park into

islands connected by multiple bridges, whereas in the case of HyP the Serpentine

River is wider and obstructs all movement between its banks, but does not com-

pletely run through the park. In terms of vegetation, both parks have areas ranging

from thick woods and groves to open lawns. Furthermore, both parks have 2 restau-

rants each, which appear to act as significant attractors. Given the similarities listed

above, any findings on PSA observed to take place in any of the two locations could

be considered as indicative of public space activity in general, rather than exhibiting

a nuance of the particular area it was observed in.

10.4.3 On Observed Activity in Areas

Considering activity in each area, there appear to be significant differences in the

volume of visitors observed. As can be seen in Table 10.2, Hyde Park consistently

attracted more visitors, almost double the number of visitors observed in QEOP,

and even accounting for the size difference between the two parks, HyP has 1.4
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times more users per km2. Furthermore, the values shown here may be expected to

be slightly skewed in favour of QEOP, considering the survey dates: For CS1:HyP

surveying took place in late October, with favourable weather (few clouds). For

CS2:QEOP surveying took place in late August, with very favourable weather (high

temperatures combined with clear skies). Therefore, it is estimated that under iden-

tical conditions, relative visitor numbers may be found to be even higher in Hyde

Park.

Nevertheless, the difference in visitor volumes observed here is attributed primarily

to historic, cultural, and locational characteristics of the parks: HyP has existed for

nearly 5 centuries, while QEOP was constructed for the London Olympic Games of

2012, and therefore it is expected that visitors of Hyde Park have established rou-

tines and activities that may span years and decades, whereas QEOP has potentially

not been assimilated yet into the daily or weekly routines of its users. Furthermore,

Hyde Park’s proximity to Central London along with its connectivity may make it a

more viable destination for people commuting to and from central London.

Case
Study

Visitor
Count

Visitors
Stationary

Visitors
Moving

Stationary
Percentage Visitors/km2

HyP 4599.25 2457.25 2142 52.54% 3612.92
QEOP 2479.25 1352.25 1127 53.87% 2570.50

Table 10.2: Case Study Activity Comparison (Average of all surveys for each case study)

It is interesting to note however that apart from overall visitor volume, the two parks

exhibit similar activity profiles. Of all recorded visitors, slightly more than half were

observed to be engaged in stationary activities. Furthermore, the most crowded lo-

cations of both parks appear to be restaurants, cafes, and other fixed-location attrac-

tions (e.g. the Speakers’ Corner and Diana, Princess of Wales Memorial Fountain

in Hyde Park, the playground and water fountain in QEOP). Given the multiple

similarities between the two parks, it is assumed then that visitor activity profiles as

observed in the two case studies presented here might be indicative of general park

visitor activity profiles, if not for urban parks in the UK, then potentially for parks

in London.





Chapter 11

Conclusion

This concluding chapter presents a summary of the thesis. Opening aims and ob-

jectives are re-addressed via the work presented here, and findings, limitations, and

shortcomings of the work are discussed holistically in more detail, and within the

overall context. Finally, directions of future research are outlined.

11.1 Review of Aims & Objectives

At the opening chapter of this thesis, the aim of this work was stated (section 1.3):

[...] to develop an Agent-Based Modelling framework of Public Space

Use, calibrated using Real-Time Data streams, and applied to a simu-

lation of current activity and conditions of Public Spaces; a Real-Time

Simulation of Public Space Activity. (section 1.3)

This overall aim was furthermore deconstructed into individual objectives, each

one addressing a different aspect of one of the three main fields (Public Space Use

(PSU)/Public Space Activity (PSA), Agent-Based Models (ABMs), and Real-Time

Data (RTD)), and through the completion of which the fulfillment of the overall aim

could be achieved. The individual objectives were:

1. Review existing literature on studies of Public Space Use, and identify pre-
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vailing hypotheses of public space user behaviour and rules of interaction.

2. Review spatial modelling approaches, and identify appropriate methodolo-

gies for modelling the activity of individuals in public spaces.

3. Review potential Real-Time Data Sources pertaining to activity in Public

Spaces, and develop methodologies to capture and analyze selected datasets.

4. Develop a general framework for Real-Time Models of Public Space Activity.

5. Based on the outcomes of objectives 1, & 2, codify identified behaviours,

build a spatial model of Public Space Activity, and couple with the general

framework developed in 4.

6. Through the combination of objectives 3 & 4, couple the general framework

model developed so far with Real-Time data feeds.

7. Apply the Real-Time Model of Public Space activity, and evaluate against

real-world conditions.

This work addressed each of the objectives in a systematic approach. The first part

of this thesis (Part I) devoted three chapters (Chapters 2, 3, and 4) to reviewing each

field independently, and set the theoretical framework for the rest of this work. Ob-

jectives 1-3 were addressed in this part, by presenting each of the three main fields of

interest (Public Space Use (PSU), Agent-Based Models (ABMs), Real-Time Data

(RTD)) in detail, discussing aspects of each that were relevant to this work, and

identifying connections between the three. More specifically, human behaviour in

public spaces was presented through a review of previous studies on public space

use, and findings were summarized into a codified set of spatial human behavioural

rules. Furthermore, spatial computational modelling methodologies were reviewed

in order to identify approaches relevant to this work, which were identified in the

field of Individual-Based Models (IBMs). Within IBMs, the Agent-Based Mod-

elling paradigm was finally identified as the most applicable for simulating public

space users’ activity, and was subsequently presented in depth. Finally, RTD was
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reviewed within the context of Big Data, its merits and shortcomings compared to

”traditional” data collection methodologies were discussed, and properties of RTD

relevant to activity in public spaces were identified.

In the second part (Part II), consisting of Chapters 5, 6, and 7, the methodologies

for developing Real-Time Simulations of Public Space Activity were discussed in de-

tail, thus addressing objectives 4-6. A conceptual model framework was presented

first, described as a combination of two sub-models working in series: A forecast

model of aggregate activity for providing continuous short term predictions of total

activity in an area, and a Spatial Disaggregation Model (SDM) of individual visi-

tor activity for translating forecasts into spatially distributed activity. The forecast

model was then supplemented with RTD and thus the real-time nature of this work

was implemented, and the SDM was developed and presented in detail using the

Overview, Design concepts, and Details (ODD) framework, therefore completing

the presentation of the Real-Time Model of Public Space Activity developed in this

work.

The third and final part (Part III) presented the application and evaluation of the re-

sulting model. Two case studies focussing on park activity and a discussion on their

results were presented over the three final chapters (Chapters 8, 9, and 10), thus ful-

filling the final objective, objective 7. Case Study 1: Hyde Park (CS1:HyP) mainly

explored the validity of the overall method, concluding that the overall approach

does hold merit, and the various simulation and RTD collection tools can indeed

support the development of a Real-Time Simulation of Public Space Activity. Case

Study 2: Queen Elizabeth Olympic Park (CS2:QEOP) extended the methodologies

developed in CS1:HyP by applying the simulation to a different area, and offered

an evaluation of the overall model. CS2:QEOP results suggested that an ABM im-

plementing human behavioural rules in public spaces can capture and simulate park

activity, however available data was was found to be inadequate in validating the

overall model in real-time, and especially so regarding spatial aspects.

The aim of this work was to explore and examine the potential of state of the art
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real-time data sources and simulation methodologies in supporting the development

of a detailed, continuous, real-time simulation of the city. With this in mind, this

work identified the most applicable modelling framework and developed a model

of activity in public spaces, which was found to adequately capture spatial activity

in parks. Furthermore, it developed methodologies for capturing real-time data per-

taining to activity in public spaces, focussing mainly on publicly available datasets.

Based on the analysis of the various real-time data sources captured, short-term

predictive models of park activity were developed and evaluated, but overall were

found to be unreliable in forecasting activity at short intervals accurately. Given all

of the above, this work considers the overall aim of developing Real-Time Simula-

tions of Public Space Activity to have been largely achieved: the components of the

overall model were developed and individually evaluated successfully. One point

that was not achieved however, is an evaluation of the overall Real-Time Model of

Public Space Activity. The reason for this is that this work was not able to identify a

single data source or combination of data sources that could offer a detailed record

of spatial activity of individual park visitors in real-time. As such the spatial distri-

bution of activity was not evaluated in real-time, and therefore the real-time spatial

aspect of this work’s overall aim was not explicitly answered.

11.2 Critique

This section discusses points of criticism on the work presented in this thesis.

On focussing on publicly available datasets As discussed in chapter 8, given the

focus of this work on public spaces, it was determined that it would be of interest to

examine the degree to which public physical life is captured and represented in our

public digital traces. Also, the use of an exclusive (non-publicly available) dataset

did not result in significantly increased model accuracy: in a direct comparison be-

tween Social Media (SocM) and wifi in CS2:QEOP, forecasts using wifi data did

indeed preform much better than SocM. However when comparing R2 scores in lin-

ear models of wifi-weather from CS2:QEOP with SocM-weather from CS1:HyP,
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both datasets seem to perform similarly. Therefore, the exclusive dataset does not

seem to introduce additional accuracy/information by itself when compared to pub-

licly available datasets.

On not evaluating the overall model As discussed in the previous section, no

dataset was found that contained high-fidelity spatial and temporal data, delivered

in real-time. Therefore one issue that can be identified with this work is an ini-

tial overestimation of the capabilities of RTD overall, however the examination this

work performed was potentially necessary to identify that at this point in time, RTD

by itself (and especially publicly available RTD) is not capable of fully supporting

the development of Real-Time Simulations of Public Space Activity, that capture

PSA in high fidelity in both space and time.

On working in breadth rather than depth This work’s focus was placed on the

combinatorial potential of the three fields: PSU, ABMs, RTD. This work identifies

the rapid changes in many fields around us, most importantly with the advent of the

age of data and information, as well as sensing and IoT which generate immense

volumes of data in real-time, but also in terms of computational power, which en-

able models and simulations to run at ever finer scales with increasing speed and

efficiency. This work wonders then what impact these changes might have on our

cities and the collective culture they express, most often seen through the interac-

tions they mediate and facilitate in their public spaces, which also appear to be un-

dergoing some significant changes, with most cities (as a public-ownership entity)

literally losing space, to new developments, gentrification, and the POPS (privately-

owned-public-spaces) phenomenon. Therefore, it was decided that in the extent of

this work, it would be more crucial to explore the potential that these new tools and

datasets might have in aiding in the understanding and shaping of current and future

manifestations of public space, and for this reason focus was placed on examining

the three fields mentioned above in combination.

On opting for 3D models It is acknowledged that calculations in three-dimensional

space are more more computationally expensive than two-dimensional space. When
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considering ABMs, 3D environments incur a significant computational load, and

additionally, and potentially more importantly, they require more calibration and

verification, due to the complexities the third dimension adds. It has been suggested

therefore that when designing an ABM, the modeller needs to make a decision

early in the design stage on whether to develop the model in 2D or 3D, as this

will have a great impact on the rest of the development process. In this work,

the decision was made early on to develop models of activity in public spaces in

3D environments. The urban built environment within which we humans move,

act, and interact is predominantly perceived through its 3rd dimension, seen in the

building facades, upper storeys in buildings, etc. as well as elements in public space,

for example bridges, underpasses, elevations, platforms, ledges, etc. that influence

our activity in such spaces. These prominent examples of the third dimension are

almost insignificant, except for some few examples of skyscrapers or prominent

topographical relief, when considering the city from a top-down perspective, as

for example on a map. However, at the architectural scale, which focusses at the

human scale, such features are what define space, and arguably affect the way space

is used. Therefore, it was decided that an accurate simulation of PSA in this work

would require the environments to be represented in their full three dimensions, and

agents would indeed perceive their environment in 3D.

11.3 Contributions

This section will present a list of all contributions of this work, by offering a sum-

mary of each (in no particular order at the moment). Starting with secondary con-

tributions first, this work presented:

A site surveying method for recording PSA in parks. The surveying method aims

for efficiency, allowing a single surveyor using a field survey application on a smart-

phone to cover 100 hectares in approximately 90 minutes, capturing park visitor lo-

cations and the activities they are engaged in, split among 2 (and potentially more)

activity types. Some alternatives were developed, discussing survey approaches de-
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pending on terrain type and obscured visibility. A further GIS process was presented

by which recorded activity was dispersed back into space.

An analysis of real-time datasets pertaining to activity in open public spaces on

their own, as well as a correlation analysis between activity in parks (as captured in

the aforementioned real-time datasets) and time and weather conditions. Through

this analysis, it was found that: daily park visitor volumes follow a consistent day-

night cycle as expected, and furthermore seem to be affected to a lesser degree by

weather conditions such as cloud coverage and wind speed (an expected and logical

outcome), but not temperature. Furthermore, it was established that real-time data

needs to be available at large volume to perform any meaningful analysis.

A real-time forecast model of park visitor volume, using two approaches: a lin-

ear regression model using weather forecasts as the predicting variable and proxy

real-time datasets of visitor activity as the predicted variable, and a naive forecast

model. It was found that the naive model outperformed the Generalized Linear

Model (GLM) in all cases, suggesting that real-time datasets relating to PSA, when

examined at a fine temporal scale, exhibit a significant amount of variation/noise to

be accurately predicted using a GLM.

A review of observational studies on human behaviour in public spaces. Surveys

on the topic suggest an agreement on multiple aspects of overall human behaviour,

concerning social characteristics (the majority of people in public spaces are found

to be in groups of small numbers, with an average of approximately 1.7 people per

group), locomotion (average movement speed was found to be 1.5-1.6 m/s nega-

tively correlating with group size), movement (in open spaces, the direct path be-

tween current location and target location was found to be preferable), as well as

crowding (people engaging in stationary activities in public spaces were found to

prefer locations that placed them closer to others).

A review of the field of pedestrian ABMs in the past 15 years. The review high-

lighted trends in the field in recent years, identified mainly in increased fidelity
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in agent perception and behaviours, and increased agent heterogeneity through a

broadening of the field to incorporate other approaches. While no particular trend

was identified in terms of spatial resolution, size, or dimensionality, models in re-

cent years were found to include rules that enable agents to function with greater

autonomy, namely by incorporating vision and a wider set of behavioural rules,

therefore increasing fidelity from the bottom-up. An additional trend was noted in

the turn towards other fields, incorporating psychological and personality traits to

agents interacting in spatial environments, thus allowing for greater heterogeneity.

An ABM of PSA functioning in three-dimensional space, presented using the ODD

framework (Grimm et al., 2010). This was achieved by extending existing ap-

proaches in pedestrian modelling and incorporating observations of human be-

haviour in public spaces as agent behavioural rules. This implementation constitutes

a partial validation of observations and hypotheses on human behavioural rules, as

presented in relevant literature.

The primary contribution of this work consists of a framework and general model

for simulating activity in public spaces, in real-time. This Real-Time Model of Pub-

lic Space Activity is the result of the combination of the three fields of this work:

ABMs, PSU, and RTD. In developing such a model, this work highlighted recent

advances in multiple fields including Real-Time Data and urban modelling, but also

a rise in availability of 3D geometric data of cities, and even further a potential

for the procedural generation of 3D city models at very high detail. This work

identifies these advances in capturing and recreating the urban landscape not as

an end-goal in urban visualisations, but rather as the stepping stone and basis for

creating high-fidelity simulations of urban dynamics, as acted out by the city’s in-

habitants. This work therefore assumes that the various virtual 3D models of cities

and places available through a plethora of platforms (Google Maps being the most

well-known example, but also Mapbox, WRLD, Mantle, Vizicities, among others)

will function as the virtual environment within which synthetic individuals may in-

teract and recreate the daily urban experience. This work further assumes that RTD
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on cities will continue to expand, first of all in volume and aspects captured, but

also in terms of veracity and accuracy, powered by the Internet of Things (IoT)

and ubiquitous sensing, and will therefore enable the aforementioned simulations

to perform in real-time; to develop high-fidelity models and simulations of cities

that run concurrently to the real world. This would enable then the transition from

urban dashboards as monitors of urban routine, to urban simulations as predictors

of an urban near-future.

11.4 Future Work

This work relied on multiple fields of study in its investigation of real-time models

of activity in public spaces. It was expected then that any future paths this work

may take can be identified in multiple fields. Furthermore, due to this work’s com-

binatorial nature, it focussed on bringing multiple fields together. Therefore, it is

acknowledged that there exists potential for improving this work just by exploring

and incorporating advances in each of the fields of this work. However, even at

this early stage for this Real-Time Model of Public Space Activity, potential appli-

cations have been identified. This section will address the future of this work, by

discussing some of the areas this work can expand in, and by briefly presenting

potential applications.

Regarding this work’s computational nature as expressed mainly through the ABMs

developed, the exploratory aspects of the models could certainly benefit by investi-

gating scaling potential and capabilities. The models implemented in the two case

studies focussed on well-defined areas covering a surface area of approximately 100

hectares, and were not tested in any aspect (neither model accuracy, nor computa-

tional capability) at capturing activity over larger areas. The first point of expansion

of this work therefore is identifying the required changes and optimizations needed

to scale up the simulations, in order to capture activity at the scale of the individual

over a larger part of the urban environment. Improvements for such an endeavour

are identified primarily in computational efficiency, which would require first of all
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a review of algorithms with a view towards optimization, as well as the capabilities

of other programming languages and modelling frameworks, more suited for large-

scale simulations. However, in addition to the predominantly technical aspect of

algorithm performance, scaling up the simulations presents another challenge that

was not covered in this work, regarding land use. This work dealt exclusively with

park activity for reasons discussed previously, and to do so it focussed on two of the

largest open urban areas in London, Hyde Park and Queen Elizabeth Olympic Park,

with parks themselves only covering a small percentage of the total area of Lon-

don. Any expansion of the target area would inevitably encompass urbanized and

built-up areas as well, which potentially present a largely different set of behaviours

and rules in terms of user activity. Therefore, the second point of expansion of this

work regarding scaling up the simulations is the expansion of agent behavioural

rules to include activity in urbanized/more complex areas, such as plazas, squares,

indoor spaces, and sidewalks. A third branch for this work is further identified in

the combination of the two aims mentioned above with the increasing availability

of 3D urban geometry, as found through multiple online mapping platforms. If an

ABM is developed that can simulate varied public space activity over large areas

with computational efficiency, then such a tool may be coupled with procedural

generation models of 3D urban geometry, thereby producing simulations for poten-

tially any location in urban space. This would require an abstraction of agent rules

to enable automatic coupling and identification of relevant rule sets, and additional

incorporation of procedural 3D environment generation, which was not covered in

this work as the virtual environments for the areas of interest were recreated man-

ually. Such a model would be able to leverage the potential of 3D mapping tools

(e.g. openstreetmap, Mapbox), to produce expansive, detailed simulations of urban

dynamics.

Regarding the Real-Time nature of this work, the overall conclusion was that pub-

licly available real-time data sources at present do not yet offer the required fidelity

to capture, forecast, and validate models of activity in public spaces continuously in

real-time. With that said, this thesis acknowledges both its own limitation in mainly
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focussing on publicly available datasets, as well as the rapidly expanding general

field of Real-Time and Big Data. Therefore, this work will continue to evaluate

RTD sources regarding their potential in capturing activity in public spaces, as

they become available, as anticipates that such information will become available

in the near-future, with the hope that it will be placed in the public domain. Fur-

thermore, in the future, this work will re-evaluate the methods used in short-term

forecasting and will perform a more detailed reading of available statistical meth-

ods and models, in order to expand and enhance its forecasting arsenal with tools

in addition to the two approaches used here (naive forecasts and GLMs). Finally,

as said previously, during this work, no dataset was found that accurately captured

spatial activity, and therefore the potential of the SDM as a real-time tool remains

un-validated. This may be revisited in the future, via two paths: First, by acquir-

ing access to a dataset that provides such information, when it becomes available.

Second, by developing appropriate methods within the ABM framework that will

allow for real-time evaluation of spatial results and will enable a form of feedback

in terms of agent spatial activity.

Moving forward from improvements, potential applications of this work will be

discussed. Two main fields of application are identified here: one regarding the ex-

ploratory potential, related mainly to the spatial-computational nature of this work,

the other focussing on dissemination. Regarding the exploratory potential, this work

developed models of public space activity, calibrated at the level of the individual

user of public space, and most importantly designed in a reactive ABM framework,

meaning that agents react to their environment based on their codified set of be-

havioural rules. Such a model can be beneficial in the fields of urban design and

planning, as a tool for exploring ”What If” scenarios, particularly in the design stage

of urban public spaces. ABMs have been employed in these fields, and particularly

pedestrian and crowd simulations have been used extensively in the design of large,

crowded spaces such as airports, stadiums, and offices, to optimize flows, acces-

sibility, and in evacuation scenarios. However, these models focus exclusively on

individual movement, which as has been discussed previously is definitely not the
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only (and potentially not even the primary) activity taking place in public spaces.

As it stands, the design of new open urban spaces lacks a tool able to provide an

evaluation of the design in terms of its stated goals, which often aim to be that of

attracting people and activities, and allowing for comfortable and safe engaging in

activities for all visitors. Guidelines on the design of public spaces exist and vary

between cultures and locations, and are often aiming at allowing the individual de-

signers to offer the best solution to the current problem. However, the evaluation of

any implementation in urban design can often only be performed ”after the fact”, i.e.

after design and construction is completed and the project is delivered to the public,

which rules out any major corrections or improvements. A model of public space

activity such as the one presented here could offer such a metric, covering basic

functions required in successful public spaces, by allowing the designer to evaluate

a proposed layout during the design stage, and help identify problematic issues. Of

course, such an implementation would require extensive research to identify spatial

activity qualities that are considered as ”good” to be used as a metric for design

performance, which is in itself a complicated task, as preferences change over time,

between cultures, and even between spaces in the same city (no two spaces of a city

are exact duplicates, nor they should be). Nevertheless, a set of parameters may

be identified that constitute a ”baseline” of performance in terms of public space

activity, and then subsequently used as a metric to ensure that new urban spaces

adequately address the basic needs of the community.

The second application regarding dissemination, is identified as a continuation and

expansion upon existing approaches to visualisations of urban datasets. The volume

and velocity of urban Big Data is being captured through Urban Dashboards, plat-

forms offering a wide range of relevant information for a city at a glance. As has

been discussed previously in this thesis, these dashboards perform well in visualis-

ing real-time information in a meaningful and comprehensible way to the general

public, most often employing graph and chart visuals to disseminate information.

Therefore, these platforms often lack the spatial aspect in their visualisations. On

the other hand, online mapping platforms offer a view of the physical form of the
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city as it is, i.e. a static image. These two approaches could potentially combine

in spatial visualisations of the city as it happens, by appending real-time infor-

mation to each location in the city. Indeed, some commercial mapping platforms

have begun offering real-time information (e.g. Google Maps offers a live traffic

view showing current traffic conditions, as well as current crowding conditions for

venues, in metropolitan areas). It would be possible therefore to develop visuali-

sation models spanning an entire city, able to visualise urban dynamics as they are

exhibited through their individuals, in real-time, or in other words, function as a

spatially-enhanced version of urban dashboards.

11.5 Concluding Remarks

Throughout this work, three main aspects of urban design and planning were placed

in focus: how people interact with the urban environment (through the study of

Public Space Activity (PSA) and observations on park visitor activity), tools for

visualising and analyzing urban design (through the study of Agent-Based Models

(ABMs) and 3D representations of urban public space), and data collection meth-

ods for studying urban activity (through the examination of urban Real-Time Data

(RTD)). In addition to reviewing recent advances in these fields, this work pre-

sented methods for combining these fields, so that more comprehensive and detailed

models of urban environments may be constructed, that can operate at finer spatial

and temporal scales, and are capable of simulating aspects of the city as it is right

now, in other words building a ’digital twin’ (Dawkins et al., 2018) of a city’s pub-

lic space. In this regard, this work presented an approach that builds on previous

work on virtual 3D real-time models of cities, otherwise termed ’Urban Simulacra’

(Batty and Hudson-Smith, 2005) and ’Mirror Worlds’ (Hudson-Smith et al., 2009),

proposing new ways for viewing, understanding, and planning future cities.
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Appendix A

Auxiliary Functions

A.1 Disaggregating varying length time series

This paper discusses a linear interpolation method for disaggregating time series of

varying duration. For a review of previous work on statistical disaggregation meth-

ods, see (Guerrero, 1990). Primarily, this method functions on a similar premise to

that of previous work (Lisman and Sandee, 1964, Boot et al., 1967) using neigh-

bouring periods to calculate disaggregated values for the period in question, and

focuses on removing artificial steps potentially introduced between periods. Fur-

thermore, it addresses the issue of working with varying period durations, where

period lengths are known to be different. By employing a linear interpolation ap-

proach, absolute length is irrelevant, instead using relative positions in the period.

As such, this method can be applied to time series consisting of different length pe-

riods, as it is in this case, for calendar months with durations between 28-31 days.

Furthermore, this method is fairly straightforward in application, as it requires the

calculation of 3 values for each period, allowing for quick implementation.

Assume a time series T = (Ta,Tb, ...Tn), consisting of consecutive periods of vary-

ing lengths (durations) L = (La,Lb, ...Ln), each with an associated value P =

(Pa,Pb, ...Pn). The average value for each period n is Vn = Pn/Ln (Figure A.1).
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Figure A.1: Time Series with Period Totals

Figure A.2: Period Mid- and Break-points

For each period Tn, its midpoint in length is denoted by tn. Breakpoints between

periods are located at tn,n+1 = tn + (Ln/2). The values Vn,n+1 at breakpoints are

calculated as a weighted average between periods Tn and Tn+1 so that Vn,n+1 =

Vn +(Vn+1−Vn)∗
tn,n+1−tn
tn+1−tn

(Figure A.2).

Figure A.3: Value Offsets

New values at midpoints tn are calculated as averages between break points for a

specific period, so that Vn.o f f =
Vn−1,n+Vn,n+1

2 . Furthermore, the difference Vn.di f f

between period average and new value is calculated as Vn.di f f = Vn−Vn.o f f (Fig-

ure A.3).

The final value V ′n is calculated as the original value Vn offset by the difference

Vn.di f f , so that V ′n = Vn +Vn.di f f , resulting in either positive or negative offset, de-

pending on Vn.di f f value being positive or negative. The resulting series of vec-
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Figure A.4: Final Values

tors (tn,V ′n),(tn,n+1,V ′n,n+1)..., produce a curve representing the disaggregated val-

ues (Figure A.4).

Figure A.5: Final Curve

To verify that sums are conserved for each period, the area defined by the curve must

equal the area for the original shape (Figure A.5). Therefore, for case 2 (Figure A.6),

it is enough to show that for each period, area Eae f d = Eabcd .

Figure A.6: Case 2 Detail Figure A.7: Case 2 Area Equality

From Figure A.7:

Eabcd = 2∗w∗ (h1 +h2)
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Eae f d = Ea f d +Eaeg +Eeg f

Ea f d = 2∗w∗h2

Eaeg = w∗h1

Eeg f = w∗h1

therefore:

Eae f d = 2∗w∗h2 +2∗w∗h1 = 2∗w∗ (h1 +h2)

Similarly for cases 1 and 3, areas of resulting shapes equal original shapes. There-

fore, to calculate the value Vx at time tx in period Tn:

if tx < tn (time point is in the first half of the period), then the value is a weighted

average

Vx =Vn−1,n +(Vn−Vn−1,n)∗
tx− tn−1,n

tn− tn−1,n

Similarly if tx > tn, then

Vx =Vn +(Vn,n+1−Vn)∗
tx− tn

tn,n+1− tn

A.2 Point in Polygon Python Function

Code snippet illustrating the Point in Polygon function developed to be used within

the Python environment. Given a point as a pair of coordinates x, y, and a list of

coordinate pairs poly, the function returns True if the point is inside the polygon,

and False if not. The code was originally published by John Berry on stackover-

flow1.
1 def point_in_poly(x,y,poly):
2

3 n = len(poly)
4 inside = False
5

6 p1x,p1y = poly[0]
7 for i in range(n+1):

1http://stackoverflow.com/questions/16325720/point-in-convex-polygon
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8 p2x,p2y = poly[i % n]
9 if y > min(p1y,p2y):

10 if y <= max(p1y,p2y):
11 if x <= max(p1x,p2x):
12 if p1y != p2y:
13 xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
14 if p1x == p2x or x <= xints:
15 inside = not inside
16 p1x,p1y = p2x,p2y
17

18 return inside

An example list of coordinates outlining Hyde Park in London, listed in clockwise

order:
1 [(51.502188500000003,-0.174641000000000),
2 (51.503152900000003,-0.174667300000000),
3 (51.506781400000001,-0.172041400000000),
4 (51.506699699999999,-0.171174900000000),
5 (51.507238999999998,-0.170492200000000),
6 (51.510082799999999,-0.170807300000000),
7 (51.511308499999998,-0.173170600000000),
8 (51.511962099999998,-0.173328100000000),
9 (51.513432700000003,-0.158675700000000),

10 (51.510327900000000,-0.156601300000000),
11 (51.505539200000001,-0.150981900000000),
12 (51.503381599999997,-0.150876900000000),
13 (51.503234499999998,-0.153424000000000),
14 (51.502188500000003,-0.166159500000000)]

A.3 Automated Social Media Data Collection

Social Media post collection was performed using automated scripts written in the

python programming language. The scripts were set to run every day 15 minutes

past midnight, and queried social media services’ Application Programming Inter-

faces (APIs) for geolocated posts originating in the area of interest, published any

time during the previous day. In the following script, data collection for Case Study

1: Hyde Park is shown, collection for Case Study 2: Queen Elizabeth Olympic Park

used the same functions, with the only difference being the coordinate pairs. Script

setup and global variables are set as following:
1 import requests
2 import threading
3 import json
4 import sys
5 from datetime import datetime
6 import time
7 import os
8 import tweepy
9

10 lat = 51.505770
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11 lng = -0.164339
12

13 #Twitter authorisation setup
14 consumer_token = ’app consumer key goes here’
15 consumer_secret = ’app consumer secret goes here’
16 key = ’access token key goes here’
17 secret = ’access token secret goes here’
18

19 #Instagram authorisation setup
20 igAccessToken = ’instagram access token goes here’
21

22 maxTimeStart = int(time.time()) - 15*60
23 minTimeStart = maxTimeStart - 86400
24

25 maxTime = maxTimeStart
26 minTime = minTimeStart
27

28 events = []
29 counter = 0
30

31 looping = True
32

33 dateNow = time.strftime("%Y_%m_%d", time.localtime(maxTimeStart))
34

35 filename = "hyp_24H-" + dateNow
36 log = ’log.csv’
37

38 hypCorners = [(51.502188500000003,-0.174641000000000),
39 (51.503152900000003,-0.174667300000000),
40 (51.506781400000001,-0.172041400000000),
41 (51.506699699999999,-0.171174900000000),
42 (51.507238999999998,-0.170492200000000),
43 (51.510082799999999,-0.170807300000000),
44 (51.511308499999998,-0.173170600000000),
45 (51.511962099999998,-0.173328100000000),
46 (51.513432700000003,-0.158675700000000),
47 (51.510327900000000,-0.156601300000000),
48 (51.505539200000001,-0.150981900000000),
49 (51.503381599999997,-0.150876900000000),
50 (51.503234499999998,-0.153424000000000),
51 (51.502188500000003,-0.166159500000000)]

A set of auxiliary functions was programmed, to setup individual platform collector

authorisation, for performing basic spatial queries (point in polygon analysis), for

processing individual tweet objects, sorting the daily list of posts chronologically,

and finally writing to an external file. These auxiliary functions are as follows:
1 def loopSetup():
2 global minTime, maxTime, events, counter, url, api, query, gCode

, url1, url2, url3, url4, url5, loopStartTime
3 loopStartTime = maxTime
4 events = []
5 counter = 0
6

7 fg = open(log, ’w’)
8 fg.write(dateNow + ’_started’)
9 fg.write(’\n’)

10 fg.close()
11

12 #TWEEPY LOOP SETUP
13 auth = tweepy.OAuthHandler(consumer_token, consumer_secret)
14 auth.set_access_token(key, secret)
15 api = tweepy.API(auth)
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16 query = ’’
17 gCode = str(lat) + ’,’ + str(lng) + ’,1.5km’
18

19 #IG LOOP SETUP
20 url1 = "https://api.instagram.com/v1/media/search?access_token

={0}&lat=".format(igAccessToken)
21 url2 = "&lng="
22 url3 = "&max_timestamp="
23 url4 = "&min_timestamp="
24 url5 = "&distance=1500&count=50"
25

26 maxTimeLog = maxTime
27 url = url1 + str(lat) + url2 + str(lng) + url3 + str(maxTime) +

url4 + str(minTime) + url5
28

29 def point_in_poly(x,y,poly):
30 n = len(poly)
31 inside = False
32

33 p1x,p1y = poly[0]
34 for i in range(n+1):
35 p2x,p2y = poly[i % n]
36 if y > min(p1y,p2y):
37 if y <= max(p1y,p2y):
38 if x <= max(p1x,p2x):
39 if p1y != p2y:
40 xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
41 if p1x == p2x or x <= xints:
42 inside = not inside
43 p1x,p1y = p2x,p2y
44 return inside
45

46 def process_status(t):
47 #process individual statuses
48 d = t.created_at
49 dts = int((d - datetime(1970,1,1)).total_seconds())
50 return dts, t.created_at, t.coordinates, t.id
51

52 def sortList():
53 global events, counter, minTimeStart, maxTimeStart
54 events.append([])
55 events[counter].append(00000)
56 events[counter].append(minTimeStart)
57 events[counter].append(lat)
58 events[counter].append(lng)
59 events[counter].append(-1)
60 counter += 1
61

62 events.append([])
63 events[counter].append(11111)
64 events[counter].append(maxTimeStart)
65 events[counter].append(lat)
66 events[counter].append(lng)
67 events[counter].append(-1)
68 counter += 1
69

70 latMin = min(events, key=lambda events: events[2])[2]
71 latMax = max(events, key=lambda events: events[2])[2]
72 lonMin = min(events, key=lambda events: events[3])[3]
73 lonMax = max(events, key=lambda events: events[3])[3]
74

75 events = sorted(events, key=lambda events: events[1])
76

77 def writeFile():
78 global filename, events
79

80 length = len(events) - 2
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81

82 os.chdir("data")
83 fgStr = filename + "-" + str(length) + ’.csv’
84

85 fg = open(fgStr, ’w’)
86 fg.write(’uid,ts,lat,lon,src’)
87

88 for event in events:
89 s = str(event[0]) +","+ str(event[1]) +","+ str(event[2])

+","+ str(event[3]) +","+ str(event[4])
90 fg.write(’\n’)
91 fg.write(s)
92 fg.close()
93

94 with open(fgStr) as f:
95 with open("hyp_24H-latest.csv", "w") as f1:
96 for line in f:
97 f1.write(line)
98 os.chdir("..")

The following function collected all geolocated tweets returned by the Twitter API,

that originated from within the area of interest in the last 24 hours from when the

function was executed:
1 def collectorTweets():
2 global counter, api, query
3

4 twcounter = 0
5 validTweets = 0
6 endDay = False
7

8 searched_tweets = tweepy.Cursor(api.search, q=query, geocode=
gCode, count=100).pages()

9

10 for page in searched_tweets:
11 for tweet in page:
12 twcounter += 1
13 procTweet = process_status(tweet)
14 if procTweet[0] - minTime > 0:
15 if procTweet[0] - maxTimeStart < 0:
16 if procTweet[2]:
17 uid = procTweet[3]
18 ts = procTweet[0]
19 lt = procTweet[2]["coordinates"][1]
20 lon = procTweet[2]["coordinates"][0]
21 lnk = "noLnk"
22

23 if point_in_poly(lt, lon, hypCorners):
24 events.append([])
25 events[counter].append(uid)
26 events[counter].append(ts)
27 events[counter].append(lt)
28 events[counter].append(lon)
29 events[counter].append(1)
30 counter += 1
31 validTweets += 1
32

33 else:
34 endDay = True
35 break
36 if endDay:
37 break
38

39 fg = open(log, ’a’)
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40 fg.write(str(time.time()) + ’_tw iter done’)
41 fg.write(’\n’)
42 fg.close()
43 time.sleep(65)

The following function was used to collect all geolocated instagram posts returned

by the Instagram API, that originated from within the area of interest in the last 24

hours from when the function was executed:
1 def collectorInstagrams():
2 global counter
3 global maxTime, minTime, url, locIdCounter, locs, locsCounter
4

5 url = url1 + str(lat) + url2 + str(lng) + url3 + str(maxTime) +
url4 + str(minTime) + url5

6

7 locIdCounter = 0
8 locs = []
9 locsCounter = []

10

11 while maxTime > (minTime + 3600):
12 response = requests.get(url)
13

14 d = json.loads(response.text)
15 data = d["data"]
16

17 for i in range(0,len(data)-1):
18 lt = data[i]["location"]["latitude"]
19 lon = data[i]["location"]["longitude"]
20 uid = data[i]["user"]["id"]
21 ts = int(data[i]["created_time"])
22 lnk = data[i]["link"]
23 val = 1
24 s = str(uid) +","+ str(ts) +","+ str(lt) +","+ str(lon)

+","+ str(lnk) +","+ str(val)
25

26 if "id" in data[i]["location"]:
27 locIdCounter += 1
28 locId = data[i]["location"]["id"]
29 locNm = data[i]["location"]["name"]
30 if locId in locs:
31 locsCounter[locs.index(locId)] += 1
32 else:
33 locs.append(locId)
34 locsCounter.append(1)
35

36 if point_in_poly(lt, lon, hypCorners):
37 events.append([])
38 events[counter].append(uid)
39 events[counter].append(ts)
40 events[counter].append(lt)
41 events[counter].append(lon)
42 events[counter].append(0)
43 counter += 1
44 else:
45 if point_in_poly(lt, lon, hypCorners):
46 events.append([])
47 events[counter].append(uid)
48 events[counter].append(ts)
49 events[counter].append(lt)
50 events[counter].append(lon)
51 events[counter].append(2)
52 counter += 1
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53

54 #end if no polygon yet
55
56 sg = ’’
57 maxTime = int(data[len(data)-1]["created_time"])
58 url = url1 + str(lat) + url2 + str(lng) + url3 + str(maxTime)

+ url4 + str(minTime) + url5
59 # print(’ig iteration done’)
60 fg = open(log, ’a’)
61 fg.write(str(time.time()) + ’_ig iter done’)
62 fg.write(’\n’)
63 fg.close()
64 time.sleep(2)

The following lines of code called the main functions in order and output the daily

list to an external file.
1 def loop():
2 global loopStartTime, loopFunction, looping
3 print(’___start’)
4 loopSetup()
5 print(’___start Tw’)
6 collectorTweets()
7 print(’___start Ig’)
8 collectorInstagrams()
9 print(’___start Sort’)

10 sortList()
11 print(’___start write’)
12 writeFile()
13

14 fg = open(log, ’a’)
15 fg.write(dateNow + ’_finished’)
16 fg.write(’\n’)
17 fg.close()

The following code was used to collect planned events and number of attendees,

using Facebook’s Graph Api. Graph API queries require search keywords to be

provided, for the first case study the string ’hyde park’ was used. Essentially this

returned any events mentioning hyde park in any field. Further query parameters

were used to filter the results, so that the potential hit should be of type event as set

in Facebook’s ecosystem, its stated location falling within within 2 kilometers of

the centre of Hyde Park, and it starting within a specific time period. Further spatial

filters were added to ensure the event was taking place within the park.
1 import requests
2 import facebook
3 import json
4 import csv
5 import sys
6 from datetime import datetime
7 import time
8

9 clientID = "clientID"
10 clientSecret = "clientSecret"
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11 accessToken = "accessToken"
12 userAccessToken = ’userAccessToken’
13 longLifeUserAccessToken = ’longLifeUserAccessToken’
14

15 hypCorners = [(51.502188500000003,-0.174641000000000),
16 (51.503152900000003,-0.174667300000000),
17 (51.506781400000001,-0.172041400000000),
18 (51.506699699999999,-0.171174900000000),
19 (51.507238999999998,-0.170492200000000),
20 (51.510082799999999,-0.170807300000000),
21 (51.511308499999998,-0.173170600000000),
22 (51.511962099999998,-0.173328100000000),
23 (51.513432700000003,-0.158675700000000),
24 (51.510327900000000,-0.156601300000000),
25 (51.505539200000001,-0.150981900000000),
26 (51.503381599999997,-0.150876900000000),
27 (51.503234499999998,-0.153424000000000),
28 (51.502188500000003,-0.166159500000000)]
29
30

31 timeNow = int(time.time())
32 queryStartTime = 1447027201
33 queryEndTime = 1447804799
34

35 queryDurationSecs = queryEndTime - queryStartTime + 10
36 queryDurationDays = round(queryDurationSecs / 86400)
37

38 def point_in_poly(x,y,poly):
39 n = len(poly)
40 inside = False
41

42 p1x,p1y = poly[0]
43 for i in range(n+1):
44 p2x,p2y = poly[i % n]
45 if y > min(p1y,p2y):
46 if y <= max(p1y,p2y):
47 if x <= max(p1x,p2x):
48 if p1y != p2y:
49 xints = (y-p1y)*(p2x-p1x)/(p2y-p1y)+p1x
50 if p1x == p2x or x <= xints:
51 inside = not inside
52 p1x,p1y = p2x,p2y
53 return inside
54

55 graph = facebook.GraphAPI(access_token=longLifeUserAccessToken,
version = ’2.5’)

56 r = graph.request(’search’, args = {’q’: ’hyde park’,
57 ’type’: ’event’,
58 ’center’:’51.505770,-0.164339’,
59 ’distance’:’2000’,
60 ’since’: queryStartTime,
61 ’until’: queryEndTime,
62 ’limit’: ’500’})
63

64 cT = 0
65 cLoc = 0
66 cHyP = 0
67

68 events = []
69 for d in r[’data’]:
70 cT += 1
71
72 try:
73 lat = d[’place’][’location’][’latitude’]
74 lon = d[’place’][’location’][’longitude’]
75 cLoc += 1
76 except:
77 continue
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78

79 if point_in_poly(lat, lon, hypCorners):
80 atts = 0
81 req = d[’id’] + ’/attending/’
82
83 try:
84 print(req,
85 d[’start_time’],
86 d[’end_time’]
87 )
88 except:
89 print(req,
90 d[’start_time’],
91 )
92

93 eventDatetime = datetime.strptime(d[’start_time’], ’%Y-%m-%dT%
H:%M:%S%z’)

94 eventDatetime = eventDatetime.replace(tzinfo=None)
95 ts = int((eventDatetime - datetime(1970,1,1)).total_seconds())
96 print(ts)
97 e = graph.request(req, args = {"limit": ’500’})
98 while(True):
99 try:

100 atts += len(e[’data’])
101 # Attempt to make a request to the next page of data, if

it exists.
102 e=requests.get(e[’paging’][’next’]).json()
103 except KeyError:
104 # When there are no more pages ([’paging’][’next’]), break

from the
105 # loop and end the script.
106 break
107

108 events.append([])
109 events[cHyP].append(d[’id’])
110 events[cHyP].append(ts)
111 events[cHyP].append(lat)
112 events[cHyP].append(lon)
113 events[cHyP].append(atts)
114 cHyP += 1
115

116 datesEvents = []
117 t = queryStartTime
118 for i in range(0,queryDurationDays):
119 datesEvents.append([])
120 datesEvents[i].append(t)
121 datesEvents[i].append(0)
122 datesEvents[i].append(0)
123 for e in events:
124 if e[1] > t:
125 if e[1] < t + 86400:
126 datesEvents[i][1] += 1
127 datesEvents[i][2] += e[4]
128 t += 86400
129 print(len(datesEvents))
130

131 filename = ’fb-hyp-events-socmWthrRange_’ + str(timeNow) + ’.csv’
132 with open(filename, ’w’, newline=’’) as testfile2:
133 csv_writer = csv.writer(testfile2)
134 csv_writer.writerows(datesEvents)
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A.4 Weather Conditions Data Collection

Information on weather conditions at an area of interest was collected using the

web API service ’forecast.io’, via an automated script written in the python pro-

gramming language. A python library was used (forecastio) as an interface, and

collected data was subsequently stored in a JSON file. The full code used is as

follows:
1 import datetime
2 import forecastio
3 import json
4

5 api_key = "apiKey"
6 lat = 51.505770
7 lng = -0.164339
8

9 d = datetime.datetime.utcnow()
10 epoch = datetime.datetime.utcfromtimestamp(0)
11 s = int((d - epoch).total_seconds()) - 3600
12 d = datetime.datetime.utcfromtimestamp(s - 43200)
13 dateNow = d.strftime("%Y_%m_%d")
14 filename = "hyp_24H-" + dateNow + "-weather"
15

16 def weatherCollection(d):
17 forecast = forecastio.load_forecast(api_key, lat, lng, time = d)
18

19 with open(filename + ".json", ’w’) as outfile:
20 json.dump(forecast.json, outfile)
21

22 with open("hyp_24H-latest-weather.json", ’w’) as outfile:
23 json.dump(forecast.json, outfile)
24

25 weatherCollection(d)

A.5 QGIS Python Functions

This section presents code written in the Python programming language (version

2.7.5), for use in the QGIS software (latest tested version: 2.18.16), in order to

extend and include additional functionality, not readily available through the core

tool set of QGIS.

A.5.1 Tree Planting Script

The following python code was used to add tree locations for areas marked as

’wood’ in OpenStreetMap. Tree densities were calculated from other areas where

tree point locations were available.
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1 import random,sys
2 import math
3

4 layerWoods = QgsMapLayerRegistry.instance().mapLayersByName("
hypOsm2-features-woodFinal-merc")[0]

5 layerTrees = QgsMapLayerRegistry.instance().mapLayersByName("
hypOsm2-trees-merc")[0]

6

7 def euclideanDistance(point1,point2):
8 return math.sqrt((point2.x()-point1.x())**2 + (point2.y()-

point1.y())**2)
9

10 def randomMoveWithinRadius(p, r):
11 xNew = p[0] + (random.random()-0.5) * 2 * r
12 yNew = p[1] + (random.random()-0.5) * 2 * r
13 pNew = QgsPoint(xNew,yNew)
14 while(euclideanDistance(p,pNew) > r):
15 xNew = p[0] + (random.random()-0.5) * 2 * r
16 yNew = p[1] + (random.random()-0.5) * 2 * r
17 pNew = QgsPoint(xNew,yNew)
18 return pNew
19

20 def randomMoveWithinRadiusNormalDist(p, r):
21 xNew = p[0] +random.normalvariate(0,0.333) * r
22 yNew = p[1] + random.normalvariate(0,0.333) * r
23 pNew = QgsPoint(xNew,yNew)
24 d = euclideanDistance(p,pNew)
25 print(d)
26 while(d > r):
27 xNew = p[0] + random.normalvariate(0,0.333) * r
28 yNew = p[1] + random.normalvariate(0,0.333) * r
29 pNew = QgsPoint(xNew,yNew)
30 d = euclideanDistance(p,pNew)
31 return pNew
32

33 def randomPointInBoundingBox(b):
34 xNew = random.uniform(b.xMinimum(), b.xMaximum())
35 yNew = random.uniform(b.yMinimum(), b.yMaximum())
36 pNew = QgsPoint(xNew,yNew)
37 return pNew
38

39 def pointIsInArea(point):
40 if(selectedArea.geometry().contains(point)):
41 return True
42 else:
43 return False
44

45 def pointIsInFeature(point, feature):
46 return feature.geometry().contains(point)
47

48 layer = layerWoods
49 features = layer.selectedFeatures()
50

51 if layerTrees.isEditable():
52 idx = layer.fieldNameIndex(’treesInt’)
53 for f in features:
54 treeAmt = f.attributes()[idx]
55

56 geom = f.geometry()
57 bb = geom.boundingBox()
58 for i in range(0,treeAmt):
59

60 p = randomPointInBoundingBox(bb)
61 inArea = pointIsInFeature(p, f)
62 while (inArea == False):
63 p = randomPointInBoundingBox(bb)
64 inArea = pointIsInFeature(p, f)
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65

66 fNew = QgsFeature()
67 fNew.setAttributes([0, random.randrange(0,5000)])
68 fNew.setGeometry(QgsGeometry.fromPoint(p))
69

70 if(layerTrees.isEditable()):
71 (res, outFeats) = layerTrees.dataProvider().

addFeatures([fNew])
72 else:
73 print("layer not editable")
74 iface.mapCanvas().refresh()
75 else:
76 print("layer not editable")
77

78 layerTrees.commitChanges()

The overall reconstruction process along with the final result of all tree locations

used in the model is seen in Figure A.8.

(a) Tree Point Locations and areas marked ’wood’ (b) Reconstructed Tree Locations

Figure A.8: Tree Reconstruction Process

A.5.2 ABM Validation Grid Script

The following code was used to create the validation grids used for the Expanding

Cell Validation Method in Chapters 8 and 9. It is set up in such a way to gen-

erate grids at multiple scales, and performs the cell counts and error calculations

automatically.
1 lSim = QgsMapLayerRegistry.instance().mapLayersByName(’

simulationResultsLayerName’)[0]
2 lObs = QgsMapLayerRegistry.instance().mapLayersByName(’

observationsLayerName’)[0]
3 se = lSim.extent()
4 so = lObs.extent()
5

6 xMin = min(se.xMinimum(), so.xMinimum())
7 xMax = max(se.xMaximum(), so.xMaximum())
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8 yMin = min(se.yMinimum(), so.yMinimum())
9 yMax = max(se.yMaximum(), so.yMaximum())

10

11 xRange = xMax - xMin
12 yRange = yMax - yMin
13

14 def cellGenerator(gridxsize, gridysize, x, y, xShift, yShift):
15 if (xShift < 0):
16 shiftxmin = xMin - gridxsize * 0.25
17 elif(xShift > 0):
18 shiftxmin = xMin - gridxsize * 0.75
19 else:
20 shiftxmin = xMin
21

22 if (yShift < 0):
23 shiftymin = yMin - gridysize * 0.25
24 elif(yShift > 0):
25 shiftymin = yMin - gridysize * 0.75
26 else:
27 shiftymin = yMin
28

29 bl = QgsPoint(shiftxmin + x*gridxsize, shiftymin + y*gridysize
)

30 tl = QgsPoint(shiftxmin + x*gridxsize, shiftymin + y*gridysize
+ gridysize)

31 tr = QgsPoint(shiftxmin + x*gridxsize + gridxsize, shiftymin +
y*gridysize + gridysize)

32 br = QgsPoint(shiftxmin + x*gridxsize + gridxsize, shiftymin +
y*gridysize)

33 cellGeom = QgsGeometry.fromPolygon([[bl,tl,tr,br]])
34 fet = QgsFeature()
35 fet.setGeometry(cellGeom)
36 return fet
37
38

39 def createLayer(subdivs):
40 vl = QgsVectorLayer("Polygon?crs=epsg:32630", "ValidationGrid-

dayType_{0}".format(str(subdivs)), "memory")
41

42 pr = vl.dataProvider()
43 vl.startEditing()
44

45 pr.addAttributes( [ QgsField("xShift", QVariant.Int),
46 QgsField("yShift", QVariant.Int),
47 QgsField("countObs", QVariant.Int),
48 QgsField("countSim", QVariant.Int),
49 QgsField("pctObs", QVariant.Double),
50 QgsField("pctSim", QVariant.Double),
51 QgsField("pctDiff", QVariant.Double),
52 QgsField("pctDiffAbs", QVariant.Double),
53 QgsField("width_m", QVariant.Double),
54 QgsField("length_m", QVariant.Double),
55 QgsField("area_hec", QVariant.Double)
56 ] )
57

58 gridxsize = xRange / subdivs
59 gridysize = yRange / subdivs
60

61 xShift = 0
62 yShift = 0
63 for xShift in [-1,1]:
64 for x in range(subdivs+1):
65 for y in range(subdivs):
66 fet = cellGenerator(gridxsize, gridysize, x, y,

xShift, yShift)
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67 fet.setAttributes( [xShift,yShift
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] )

68 pr.addFeatures( [ fet ] )
69

70 xShift = 0
71 yShift = 0
72 for yShift in [-1,1]:
73 for x in range(subdivs):
74 for y in range(subdivs+1):
75 fet = cellGenerator(gridxsize, gridysize, x, y,

xShift, yShift)
76 fet.setAttributes( [xShift,yShift

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] )
77 pr.addFeatures( [ fet ] )
78

79 xShift = 0
80 yShift = 0
81 for x in range(subdivs):
82 for y in range(subdivs):
83 fet = cellGenerator(gridxsize, gridysize, x, y, xShift

, yShift)
84 fet.setAttributes( [xShift,yShift

,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] )
85 pr.addFeatures( [ fet ] )
86

87 vl.commitChanges()
88 QgsMapLayerRegistry.instance().addMapLayer(vl)
89 return vl
90

91 def countPoints(lGrid):
92 lGrid.startEditing()
93 lGrid.updateFields()
94

95 totalObs = lObs.featureCount()
96 totalSim = lSim.featureCount()
97 obs = lObs.getFeatures()
98 sim = lSim.getFeatures()
99

100 for f in lGrid.getFeatures():
101

102 countObs = 0
103 countSim = 0
104 pctObs = 0.0
105 pctSim = 0.0
106 pctDiff = 0.0
107 pctDiffAbs = 0.0
108

109 obs = lObs.getFeatures()
110 sim = lSim.getFeatures()
111

112 fg = f.geometry()
113 for fo in obs:
114 if (fg.contains(fo.geometry())):
115 countObs += 1
116

117 for fs in sim:
118 if (fg.contains(fs.geometry())):
119 countSim += 1
120

121 pctObs = float(countObs) / (totalObs * 1.0)
122 pctSim = float(countSim) / (totalSim * 1.0)
123 pctDiff = pctObs - pctSim
124 pctDiffAbs = abs(pctDiff)
125

126 geom = fg
127 h = geom.boundingBox().height()
128 w = geom.boundingBox().width()
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129 a = geom.area()/10000
130

131 f[’countObs’] = countObs
132 f[’countSim’] = countSim
133 f[’pctObs’] = pctObs
134 f[’pctSim’] = pctSim
135 f[’pctDiff’] = pctDiff
136 f[’pctDiffAbs’] = pctDiffAbs
137 f[’width_m’] = w
138 f[’length_m’] = h
139 f[’area_hec’] = a
140 lGrid.updateFeature(f)
141

142 lGrid.commitChanges()
143

144 for subdivs in range(1,16):
145 l = createLayer(subdivs)
146 countPoints(l)
147 print(’DONE WITH {0}’.format(l.name()))

A.5.3 Survey Activity Re-Dispersion Script

The following code was used to re-disperse visitor locations from the surveyor path

to the surrounding area. This was needed as the locations of visitors captured during

the site surveys was recorded as being on the surveyor path, rather than their actual

location, as discussed in Section 6.3. The following is the second amended version

of the script which was applied to Case Study 2: Queen Elizabeth Olympic Park

(CS2:QEOP), which had the added requirement of a point being in the same survey

area before and after transformation in addition to a distance limitation. The version

applied to Case Study 1: Hyde Park (CS1:HyP) is identical with the only difference

being the exclusion of the pointIsInArea() check.
1 import random,sys
2 import math
3

4 moveDist = 100
5 attempts = 10
6

7 layerWater = QgsMapLayerRegistry.instance().mapLayersByName("
waterFeaturesLayer")[0]

8 layerAreas = QgsMapLayerRegistry.instance().mapLayersByName("
CS2QEOP-SurveyAreasLayer")[0]

9 selectedArea = layerAreas.selectedFeatures()[0]
10

11 def euclideanDistance(point1,point2):
12 return math.sqrt((point2.x()-point1.x())**2 + (point2.y()-

point1.y())**2)
13

14 def randomMoveWithinRadius(p, r):
15 xNew = p[0] + (random.random()-0.5) * 2 * r
16 yNew = p[1] + (random.random()-0.5) * 2 * r
17 pNew = QgsPoint(xNew,yNew)
18 while(euclideanDistance(p,pNew) > r):
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19 xNew = p[0] + (random.random()-0.5) * 2 * r
20 yNew = p[1] + (random.random()-0.5) * 2 * r
21 pNew = QgsPoint(xNew,yNew)
22 return pNew
23

24 def randomMoveWithinRadiusNormalDist(p, r):
25 xNew = p[0] +random.normalvariate(0,0.333) * r
26 yNew = p[1] + random.normalvariate(0,0.333) * r
27 pNew = QgsPoint(xNew,yNew)
28 d = euclideanDistance(p,pNew)
29 print(d)
30 while(d > r):
31 xNew = p[0] + random.normalvariate(0,0.333) * r
32 yNew = p[1] + random.normalvariate(0,0.333) * r
33 pNew = QgsPoint(xNew,yNew)
34 d = euclideanDistance(p,pNew)
35 return pNew
36

37 def pointIsInWater(point):
38 for f in layerWater.getFeatures():
39 if(f.geometry().contains(point)):
40 return True
41 return False
42

43 def pointIsInArea(point):
44 if(selectedArea.geometry().contains(point)):
45 return True
46 else:
47 return False
48

49 def featureIsGPS(feature):
50 return feature[’event’] == ’GPS’
51

52 layer = iface.activeLayer()
53 features = layer.selectedFeatures()
54

55 if layer.isEditable():
56 for f in features:
57 fid = f.id()
58 if(featureIsGPS(f) == False):
59 geom = f.geometry()
60 xy = geom.asPoint()
61 print(xy, pointIsInArea(xy), pointIsInWater(xy),

featureIsGPS(f))
62 geomNew = QgsGeometry.fromPoint(

randomMoveWithinRadiusNormalDist(xy, moveDist))
63 inArea = pointIsInArea(geomNew.asPoint())
64 inWater = pointIsInWater(geomNew.asPoint())
65

66 c = 0
67 while((inArea==False or inWater==True) and c <

attempts):
68 geomNew = QgsGeometry.fromPoint(

randomMoveWithinRadius(xy, moveDist))
69 inArea = pointIsInArea(geomNew.asPoint())
70 inWater = pointIsInWater(geomNew.asPoint())
71 print(geomNew.asPoint(), inArea, inWater)
72 c+=1
73 if (c < attempts):
74 layer.changeGeometry(fid, geomNew)
75 iface.mapCanvas().refresh()
76 else:
77 print("Layer not in Edit Mode")





Appendix B

ABM Functions

This Appendix contains code written for the implementation of the Agent-Based

Model (ABM) of Public Space Activity (PSA). The code was written using the

C# programming language (.NET Version 2.0.50727.1433), and tested using Unity

software (latest Unity version tested: Unity 5.6.2f1).

B.1 Agent Functions

The following function initializes an individual agent entity. The AgentInit() func-

tion is called by the simulation controller every time a new agent is introduced in

the simulation.
1 public void AgentInit(float _radiusVisionMultiplier = 2f,
2 float _sitterChance = 0.15f,
3 float _featureVisitChance = 0.41f,
4 float _sportsChance = 0.05f,
5 float _radiusSports = 20f,
6 float _viewAngle = 90f)
7 {
8

9 radiusVisionMultiplier = _radiusVisionMultiplier;
10 sitterChance = _sitterChance;
11 featureVisitChance = _featureVisitChance;
12 sportsChance = _sportsChance;
13 radiusSports = _radiusSports;
14 viewAngle = _viewAngle;
15

16 if (randomizeSpeed)
17 speed += Random.Range (-0.4f, 0.4f);
18 if (!this.gameObject.GetComponent<UnityEngine.AI.NavMeshAgent>

())
19 this.gameObject.AddComponent<UnityEngine.AI.NavMeshAgent> ()

;
20 nma = this.GetComponent<UnityEngine.AI.NavMeshAgent> ();
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21 nma.speed = speed;
22 nma.enabled = false;
23

24 lifetime = agentUtils.GetAgentLifetime ();
25 birthTime = Time.frameCount;
26

27 groupSize = agentUtils.GetGroupSize ();
28 for (int i = 0; i < groupSize; i++) {
29 this.gameObject.AddComponent<BoxCollider> ();
30 }
31

32 moveToRandomLocation ();
33 controller c = GameObject.FindGameObjectWithTag ("

GameController").GetComponent<controller> ();
34 c.agentsWalking += groupSize;
35

36 hasInitiated = true;
37 Invoke ("DebugPath", Random.Range(0f,5f));
38 }

The Update() function is called once per frame in the Unity .NET environment. It

controls agents’ frame-by-frame behaviour, colours them according to current state,

and keeps track of time spent on activities. It does not contain any decision trees.

Unless an agent is engaged in a stationary activity, the Update() function calls the

TakeStep() function, which moves an agent through the environment.
1 void Update () {
2 if (!hasInitiated) {
3 return;
4 }
5 timeAlive++;
6

7 if (agentState == simUtils.agentStates.Walking
8 || agentState == simUtils.agentStates.MovingToSittingSpot
9 || agentState == simUtils.agentStates.MovingToSportsSpot

10 || agentState == simUtils.agentStates.MovingToFeature
11 || agentState == simUtils.agentStates.

SearchingNextSittingSpot
12 || agentState == simUtils.agentStates.SearchingNextSportsSpot
13 || agentState == simUtils.agentStates.Exiting)
14 TakeStep ();
15 else if (agentState == simUtils.agentStates.BuggedOut) {
16 decideNextActivity ();
17 }
18

19 if (agentState == simUtils.agentStates.Walking) {
20 GetComponent<Renderer> ().material.color = Color.white;
21 } else if (agentState == simUtils.agentStates.

SearchingNextSittingSpot) {
22 GetComponent<Renderer> ().material.color = Color.white;
23 timeSpentPrepping++;
24 } else if (agentState == simUtils.agentStates.

MovingToSittingSpot) {
25 GetComponent<Renderer> ().material.color = Color.white;
26 timeSpentPrepping++;
27 } else if (agentState == simUtils.agentStates.Sitting) {
28 GetComponent<Renderer> ().material.color = Color.blue;
29 timeSpentSitting++;
30 } else if (agentState == simUtils.agentStates.Sports) {
31 GetComponent<Renderer> ().material.color = Color.cyan;
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32 timeSpentSportsing++;
33 } else if (agentState == simUtils.agentStates.FeatureVisitor) {
34 GetComponent<Renderer> ().material.color = Color.yellow;
35 timeSpentFeaturing++;
36 } else if (agentState == simUtils.agentStates.

SearchingNextSportsSpot) {
37 timeSpentPrepping++;
38 } else if (agentState == simUtils.agentStates.MovingToSportsSpot

) {
39 timeSpentPrepping++;
40 } else if (agentState == simUtils.agentStates.MovingToFeature) {
41 timeSpentPrepping++;
42 }
43

44 timePctSpentSitting = timeSpentSitting / (float)timeAlive;
45 timePctSpentFeaturing = timeSpentFeaturing / (float)timeAlive;
46 timePctSpentSportsing = timeSpentSportsing / (float)timeAlive;
47 timePctSpentPrepping = timeSpentPrepping / (float)timeAlive;
48 }

1 void TakeStep(){
2 if (Vector3.Distance (this.transform.position, currentWalkTarget

) < 3f)
3 finishedMoving ();
4 else {
5 if (Vector3.Distance (this.transform.position, nextPathPoint)

< 2f) {
6 try{
7 pathPoints.RemoveAt (0);
8 nextPathPoint = pathPoints [0];
9 }

10 catch{
11 timeAlive = lifetime;
12 finishedMoving ();
13 }
14 }
15

16 this.transform.LookAt (nextPathPoint);
17 this.transform.position += this.transform.forward * speed;
18 }
19 }

The agent randomly chooses a new activity every time it completes its current over-

all task. The new activity is chosen using a stochastic model based on a Probabilistic

Finite-State Machine (PFSM), shown in Figure 7.6. Its code implementation is as

follows:
1 void decideNextActivity(){
2 int timeLeft = lifetime - timeAlive;
3 int sitDuration = (int)avgActivityDuration*2;
4

5 if (timeAlive > lifetime) {
6 PrepareForExit ();
7 return;
8 } else if (timeAlive < 300) {
9 agentState = simUtils.agentStates.Walking;

10 moveToRandomLocation ();
11 return;
12 }
13

14 simUtils.agentActivities potentialNextActivity;
15 float v = Random.Range (0f, 1f);
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16 if (v < sitterChance)
17 potentialNextActivity = simUtils.agentActivities.Sit;
18 else if (v < sitterChance + featureVisitChance && GameObject.

FindGameObjectWithTag("GameController").GetComponent<
controller>().featuresExist)

19 potentialNextActivity = simUtils.agentActivities.FeatureVisit;
20 else if (v < sitterChance + featureVisitChance + sportsChance)
21 potentialNextActivity = simUtils.agentActivities.Sports;
22 else
23 potentialNextActivity = simUtils.agentActivities.Walk;
24

25 nextActivity = potentialNextActivity;
26

27 if (nextActivity == simUtils.agentActivities.Sit) {
28 currentPrepStartTime = Time.frameCount;
29 agentState = simUtils.agentStates.SearchingNextSittingSpot;
30 currentActivity = simUtils.agentActivities.Walk;
31 nextActivityDuration = sitDuration;
32 StartCoroutine (SampleForSittingSpots ());
33 } else if (nextActivity == simUtils.agentActivities.FeatureVisit

) {
34 currentPrepStartTime = Time.frameCount;
35 currentActivity = simUtils.agentActivities.Walk;
36 nextActivityDuration = sitDuration;
37 setupFeatureVisit ();
38 } else if (nextActivity == simUtils.agentActivities.Sports) {
39 currentPrepStartTime = Time.frameCount;
40 agentState = simUtils.agentStates.SearchingNextSportsSpot;
41 currentActivity = simUtils.agentActivities.Walk;
42 nextActivityDuration = sitDuration;
43 StartCoroutine (SampleForSportsSpots ());
44 } else {
45 agentState = simUtils.agentStates.Walking;
46 moveToRandomLocation ();
47 }
48 }

Every time an agent completes an activity, the appropriate function is executed, ei-

ther to set up the next set of directions (for example during a more complex process

requiring preparation), or to return the agent to its default state of deciding its next

activity. The two functions that take care of these are presented in the following

code snippets (all stationary activities, including Sit, Feature Visit, and Sport, make

use of the finishedSitting() function). The finishedMoving() function further illus-

trates the implementation for the calculation of the duration of a stationary activity.
1 void finishedMoving(){
2 if (Vector3.Distance (this.transform.position, currentWalkTarget

) > 10) {
3 setPathToLocation (currentWalkTarget);
4 return;
5 }
6 controller c = GameObject.FindGameObjectWithTag ("GameController

").GetComponent<controller> ();
7

8 if (agentState == simUtils.agentStates.Exiting)
9 RemoveAgent ();

10 else if (timeAlive > lifetime)
11 PrepareForExit ();
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12 else if (agentState == simUtils.agentStates.
SearchingNextSittingSpot) {

13 if (samplingLocations)
14 moveToRandomLocation ();
15 else {
16 agentState = simUtils.agentStates.MovingToSittingSpot;
17 setPathToLocation (nextSittingLocation);
18 locationToReturnTo = nextSittingLocation;
19 }
20 }
21 else if (agentState == simUtils.agentStates.MovingToSittingSpot)

{
22 c.agentsSitting += groupSize;
23 c.agentsWalking -= groupSize;
24 agentState = simUtils.agentStates.Sitting;
25 currentActivity = simUtils.agentActivities.Sit;
26 nextActivity = simUtils.agentActivities.Walk;
27 nextActivityDuration = (int)(Time.frameCount -

currentPrepStartTime);
28

29 float v1 = 1f / (sitterChance + sportsChance +
featureVisitChance);

30 float v2 = (float) nextActivityDuration / avgActivityDuration;
31 float mod = ((v1 + v2 - 1) / (v1 - 1));
32 float durationFinal = (avgActivityDuration * mod * 1.5f);
33

34 StartCoroutine(InvokeAfterFrames ("finishedSitting", (int)
durationFinal));

35 }
36 else if (agentState == simUtils.agentStates.

SearchingNextSportsSpot) {
37 if (samplingSportsLocations)
38 moveToRandomLocation ();
39 else {
40 agentState = simUtils.agentStates.MovingToSportsSpot;
41 setPathToLocation (nextSportsLocation);
42 locationToReturnTo = nextSportsLocation;
43 }
44 }
45 else if (agentState == simUtils.agentStates.MovingToSportsSpot)

{
46 c.agentsSports += groupSize;
47 c.agentsWalking -= groupSize;
48 agentState = simUtils.agentStates.Sports;
49 currentActivity = simUtils.agentActivities.Sports;
50 nextActivity = simUtils.agentActivities.Walk;
51 nextActivityDuration = (int)(Time.frameCount -

currentPrepStartTime);
52 this.transform.localScale = new Vector3(radiusSports*2,10,

radiusSports*2);
53

54 float v1 = 1f / (sitterChance + sportsChance +
featureVisitChance);

55 float v2 = (float) nextActivityDuration / avgActivityDuration;
56 float mod = ((v1 + v2 - 1) / (v1 - 1));
57 float durationFinal = (avgActivityDuration * mod * 1.5f);
58

59 StartCoroutine(InvokeAfterFrames ("finishedSitting", (int)
durationFinal));

60 }
61 else if (agentState == simUtils.agentStates.MovingToFeature) {
62 c.agentsFeatureVisitors += groupSize;
63 c.agentsWalking -= groupSize;
64 Vector3 fPos = targetFeature.transform.position;
65 Vector3 fExt = targetFeature.GetComponent<Collider> ().bounds.

extents;
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66 Vector3 newPos = new Vector3 (fPos.x + Random.Range(-fExt.x,
fExt.x), fPos.y, fPos.z + Random.Range(-fExt.z,fExt.z));

67 int counter = 0;
68 while (counter < 30 && !simUtils.PointInOABB (newPos,

targetFeature.GetComponent<BoxCollider> ())) {
69 counter++;
70 newPos = new Vector3 (fPos.x + Random.Range (-fExt.x, fExt.x

), fPos.y, fPos.z + Random.Range (-fExt.z, fExt.z));
71 }
72 this.transform.position = newPos;
73 agentState = simUtils.agentStates.FeatureVisitor;
74 currentActivity = simUtils.agentActivities.FeatureVisit;
75 nextActivity = simUtils.agentActivities.Walk;
76 nextActivityDuration = (int)(Time.frameCount -

currentPrepStartTime);
77

78 float v1 = 1f / (sitterChance + sportsChance +
featureVisitChance);

79 float v2 = (float) nextActivityDuration / avgActivityDuration;
80 float mod = ((v1 + v2 - 1) / (v1 - 1));
81 float durationFinal = (avgActivityDuration * mod * 1.5f);
82

83 StartCoroutine(InvokeAfterFrames ("finishedSitting", (int)
durationFinal));

84 } else
85 decideNextActivity ();
86 }
87

88 void finishedSitting(){
89 controller c = GameObject.FindGameObjectWithTag ("GameController

").GetComponent<controller> ();
90 if (agentState == simUtils.agentStates.FeatureVisitor)
91 c.agentsFeatureVisitors -= groupSize;
92 else if (agentState == simUtils.agentStates.Sitting)
93 c.agentsSitting -= groupSize;
94 else if (agentState == simUtils.agentStates.Sports)
95 c.agentsSports -= groupSize;
96 this.transform.localScale = new Vector3(1,2,0.5f);
97 this.transform.position = locationToReturnTo;
98 agentState = simUtils.agentStates.Walking;
99 currentActivity = simUtils.agentActivities.Walk;

100 nextActivity = simUtils.agentActivities.Walk;
101 c.agentsWalking += groupSize;
102 moveToRandomLocation ();
103 }

Once an agent has exceeded its intended lifetime, or if it has been flagged by the

controller for premature exit, it starts executing its exiting process, which is imple-

mented through the two following functions:
1 void PrepareForExit(){
2 controller c = GameObject.FindGameObjectWithTag ("GameController

").GetComponent<controller> ();
3 if (!c.gatesExist) {
4 RemoveAgent ();
5 } else {
6 GameObject g;
7 if (c.gatesUseWeights)
8 g = simUtils.getRandomGate ();
9 else

10 g = simUtils.getRandomGateWeighed ();
11
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12 agentState = simUtils.agentStates.Exiting;
13 setPathToLocation (g.transform.position);
14 g.GetComponent<gateScript> ().agentsExited ++;
15 }
16

17 c.IncreaseAgentsLeavingSoon (groupSize);
18 }
19

20 void RemoveAgent(){
21 controller c = GameObject.FindGameObjectWithTag ("GameController

").GetComponent<controller> ();
22 c.agents.Remove (this.gameObject);
23 c.AdjustAgentPopulation (-groupSize);
24 c.agentsWalking -= groupSize;
25 c.agentsExitingNextUpdate -= groupSize;
26 c.agentsExitingCounted -= groupSize;
27 c.calculateAgentStats (lifetime,groupSize);
28 if (debuggingTargetGO != null) {
29 Destroy (debuggingTargetGO);
30 }
31 Destroy (this.gameObject);
32 }

B.2 Controller Functions

The controller object is a unique entity in the simulation that takes care of higher

level functions, such as agent population size, keeping track of model statistics,

and reading and writing form external files. Its initialization function is as follows

(note that input parameters are set from within the Unity User Interface, and are not

shown here):
1 public void SimInit () {
2 if (saveToFile) {
3 string runParams = SetModelParamsString ();
4

5 System.Guid guid = System.Guid.NewGuid ();
6 runId = ((int)(System.DateTime.UtcNow - new System.DateTime

(1970, 1, 1)).TotalSeconds).ToString () + "_" + guid.
ToString ();

7

8 runId = ((int)(System.DateTime.UtcNow - new System.DateTime
(1970, 1, 1)).TotalSeconds).ToString () + "_" + runParams;

9 Directory.CreateDirectory ("modelRuns/" + runId);
10

11 WriteModelParamsToFile ();
12 }
13

14 delay100f = new List<float> ();
15

16 if (useDataset) {
17 readData ();
18 agentMaxPopulation = populationPredicted [0];
19 agentMaxPopulationNextStep = populationPredicted [0];
20 updatesPopulation++;
21 }
22

23 FrameCountAtStart = Time.frameCount;
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24 gates = simUtils.getGates ();
25 features = simUtils.getFeatures ();
26 if (gates.Length != 0)
27 gatesExist = true;
28 if (features.Length != 0)
29 featuresExist = true;
30

31 containerAgent = GameObject.FindGameObjectWithTag ("container-
Agent").transform;

32

33 if (uiLineMaxAgents && uiLineTotalAgents &&
uiLineMaxAgentsNoExits){

34 uiElementsExist = true;
35 }
36

37 StartCoroutine (AddAgentsOverTime (agentMaxPopulation));
38

39 if (uiElementsExist) {
40 float val = agentMaxPopulationNextStep / 20f;
41 Vector2 p = new Vector2 (updates * timeStepUiLength, val);
42 Vector2[] pts = uiLineMaxAgents.Points;
43 Vector2[] ptsNew = new Vector2[pts.Length + 2];
44 for (int i = 0; i < pts.Length; i++) {
45 ptsNew [i] = pts [i];
46 }
47 ptsNew [ptsNew.Length - 2] = p;
48

49 p = new Vector2 (updates * timeStepUiLength+timeStepUiLength,
val);

50 ptsNew [ptsNew.Length - 1] = p;
51 uiLineMaxAgents.Points = ptsNew;
52 }
53

54 StartCoroutine(InvokeAfterFrames ("calcCurrentPop",
updateIntervals/4));

55 StartCoroutine(InvokeAfterFrames ("ControllerUpdate",
updateIntervals));

56 }

The ControllerUpdate() function keeps track of agent population size, and ensures

that the Spatial Disaggregation Model (SDM) is not deviating from the forecast. The

controller updates once every 900 frames (15 minutes in simulation time). Auxil-

iary functions for setting the forecast population size for the next period and also

for getting the actual population during the previous step (for validation) are also

included. The functions are as follows:
1 void ControllerUpdate(){
2 Debug.Log ("CONTROLLER UPDATING");
3 if (saveToFile) {
4 Debug.Log ("WRITING TO FILE");
5 writeModelStatsToFile ();
6 }
7 Debug.Log ("NEXT UPDATE: " + (FrameCount() + updateIntervals).

ToString());
8

9 CalculateAgentPopulationPreviousStep ();
10 int validationDiff = agentMaxPopulationNextStep -

agentPopDuringPrevStep;
11 calculateAgentPopulationNextStep();
12
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13 int agentPopDuringNextStep = agentPopulation +
agentsExitingCounted - agentsExitingNextUpdate;

14

15 if (agentPopDuringNextStep < agentMaxPopulationNextStep -
validationDiff) {

16 StartCoroutine (AddAgentsOverTime (agentMaxPopulationNextStep
- (int)(validationDiff/2f) - agentPopDuringNextStep));

17 }else if (agentPopulation + agentsExitingCounted -
agentsExitingNextUpdate > agentMaxPopulationNextStep) {

18 RemoveAgents (agentMaxPopulationNextStep - (int)(
validationDiff/2f) - agentPopDuringNextStep);

19 }
20

21 agentMaxPopulation = agentMaxPopulationNextStep;
22 agentsExitingCounted = agentsExitingNextUpdate;
23

24 StartCoroutine(InvokeAfterFrames ("ControllerUpdate",
updateIntervals));

25 }
26

27 void calculateAgentPopulationNextStep(){
28 if (!useDataset) {
29 if (usePopulationCap && agentPopulation + increaseAmt >

populationCap) {
30 increaseMaxAgentsPerUpdate = false;
31 randomizeMaxAgents = false;
32 agentMaxPopulationNextStep = populationCap;
33 }
34 if (increaseMaxAgentsPerUpdate)
35 agentMaxPopulationNextStep += increaseAmt;
36 if (randomizeMaxAgents)
37 agentMaxPopulationNextStep += Random.Range (-randomizeAmt,

randomizeAmt);
38 } else {
39 updatesPopulation++;
40 if (updatesPopulation >= populationPredicted.Count) {
41 Application.Quit ();
42 #if UNITY_EDITOR
43 UnityEditor.EditorApplication.isPaused = true;
44 #endif
45 } else {
46 agentMaxPopulationNextStep = populationPredicted [

updatesPopulation];
47 }
48 }
49 }
50

51 void CalculateAgentPopulationPreviousStep(){
52 if (!useDataset) {
53 if (randomizeMaxAgents) {
54 agentPopDuringPrevStep = agentMaxPopulationNextStep + Random

.Range (-randomizeAmt, randomizeAmt + 1);
55 } else {
56 agentPopDuringPrevStep = agentMaxPopulationNextStep;
57 }
58 } else {
59 agentPopDuringPrevStep = populationActual [updatesPopulation];
60 }
61 }

If the controller detects an inconsistency between the predicted agent population

size (as provided by an external forecast model) and the expected agent population
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size (as measured in the model) during its update, it adds or removes the number

of required agents in the simulation, to conform to the prediction. This control is

implemented as follows:
1 IEnumerator AddAgentsOverTime(int amt){
2 float addDelayFloat = updateIntervals / (float)amt;
3 int addDelay = updateIntervals / amt;
4 float agentsPerUpdateFloat = (float)amt / (float)updateIntervals

;
5 int agentsPerUpdate = (int)Mathf.Ceil (agentsPerUpdateFloat);
6 Debug.Log ("AGENTS TO ADD: " + amt);
7 Debug.Log ("ADD DELAY FLOAT: " + addDelayFloat);
8 Debug.Log ("ADD DELAY: " + addDelay);
9 Debug.Log ("Agents Per Update Float: " + agentsPerUpdateFloat);

10 Debug.Log ("Agents Per Update: " + agentsPerUpdate);
11

12 int i = 0;
13 while(i < amt){
14 int j = 0;
15 while (j < agentsPerUpdate) {
16 int groupSize;
17 if (gatesExist) {
18 GameObject g;
19 if (gatesUseWeights)
20 g = simUtils.getRandomGateWeighed ();
21 else
22 g = simUtils.getRandomGate ();
23 AddAgent (g);
24 groupSize = agents [agents.Count - 1].GetComponent<

agentBase> ().groupSize;
25 } else {
26 Vector3 l;
27 l = agentUtils.getRandomLongRangeTargetOnGround ();
28 AddAgent (l);
29 groupSize = agents [agents.Count - 1].GetComponent<

agentBase> ().groupSize;
30 }
31 i += groupSize;
32 j += groupSize;
33 }
34 yield return StartCoroutine(WaitForFrames(addDelay));
35 }
36 }
37

38 void RemoveAgents(int amt){
39 Debug.Log ("AGENTS TO REMOVE: " + amt);
40 int i = 0;
41 int j = 0;
42 while (j < amt && i < agentPopulation){
43 agentBase a = agents [i].GetComponent<agentBase> ();
44 if (a.agentState == simUtils.agentStates.Walking) {
45 a.timeAlive = a.lifetime;
46 j += a.groupSize;
47 }
48 i += a.groupSize;
49 }
50 }
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Validation Material

C.1 CS1:HyP Forecast Model Validation

Figure C.1: CS1:HyP Forecast Model Validation for 2016-03-01
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Figure C.2: CS1:HyP Forecast Model Validation for 2016-03-02

Figure C.3: CS1:HyP Forecast Model Validation for 2016-03-03
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Figure C.4: CS1:HyP Forecast Model Validation for 2016-03-04

Figure C.5: CS1:HyP Forecast Model Validation for 2016-03-05
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Figure C.6: CS1:HyP Forecast Model Validation for 2016-03-07

Figure C.7: CS1:HyP Forecast Model Validation for 2016-03-08
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Figure C.8: CS1:HyP Forecast Model Validation for 2016-03-10

Figure C.9: CS1:HyP Forecast Model Validation for 2016-03-11
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Figure C.10: CS1:HyP Forecast Model Validation for 2016-03-12

Figure C.11: CS1:HyP Forecast Model Validation for 2016-03-13
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Figure C.12: CS1:HyP Forecast Model Validation for 2016-03-14

Figure C.13: CS1:HyP Forecast Model Validation for 2016-03-15



366 APPENDIX C. VALIDATION MATERIAL

Figure C.14: CS1:HyP Forecast Model Validation for 2016-03-16

Figure C.15: CS1:HyP Forecast Model Validation for 2016-03-17
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Figure C.16: CS1:HyP Forecast Model Validation for 2016-03-18

Figure C.17: CS1:HyP Forecast Model Validation for 2016-03-19
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Figure C.18: CS1:HyP Forecast Model Validation for 2016-03-20

Figure C.19: CS1:HyP Forecast Model Validation for 2016-03-21
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Figure C.20: CS1:HyP Forecast Model Validation for 2016-03-22

Figure C.21: CS1:HyP Forecast Model Validation for 2016-03-23
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Figure C.22: CS1:HyP Forecast Model Validation for 2016-03-24

Figure C.23: CS1:HyP Forecast Model Validation for 2016-03-25
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Figure C.24: CS1:HyP Forecast Model Validation for 2016-03-26

Figure C.25: CS1:HyP Forecast Model Validation for 2016-03-28
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Figure C.26: CS1:HyP Forecast Model Validation for 2016-03-29

Figure C.27: CS1:HyP Forecast Model Validation for 2016-03-30
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Figure C.28: CS1:HyP Forecast Model Validation for 2016-03-31
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C.2 CS2:QEOP Forecast Model Validation - SocM

Figure C.29: CS2:QEOP SocM Forecast Model Validation for 2016-03-03
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Figure C.30: CS2:QEOP SocM Forecast Model Validation for 2016-03-07

Figure C.31: CS2:QEOP SocM Forecast Model Validation for 2016-03-13
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Figure C.32: CS2:QEOP SocM Forecast Model Validation for 2016-03-18

Figure C.33: CS2:QEOP SocM Forecast Model Validation for 2016-03-22
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Figure C.34: CS2:QEOP SocM Forecast Model Validation for 2016-03-29
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C.3 CS2:QEOP Forecast Model Validation - SocM -

Naive

Figure C.35: CS2:QEOP SocM Naive Forecast Model Validation for 2016-03-03
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Figure C.36: CS2:QEOP SocM Naive Forecast Model Validation for 2016-03-07

Figure C.37: CS2:QEOP SocM Naive Forecast Model Validation for 2016-03-13
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Figure C.38: CS2:QEOP SocM Naive Forecast Model Validation for 2016-03-18

Figure C.39: CS2:QEOP SocM Naive Forecast Model Validation for 2016-03-22
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Figure C.40: CS2:QEOP SocM Naive Forecast Model Validation for 2016-03-29
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C.4 CS2:QEOP Forecast Model Validation - WiFi

Figure C.41: CS2:QEOP WiFi Forecast Model Validation for 2016-03-03
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Figure C.42: CS2:QEOP WiFi Forecast Model Validation for 2016-03-07

Figure C.43: CS2:QEOP WiFi Forecast Model Validation for 2016-03-13



384 APPENDIX C. VALIDATION MATERIAL

Figure C.44: CS2:QEOP WiFi Forecast Model Validation for 2016-03-18

Figure C.45: CS2:QEOP WiFi Forecast Model Validation for 2016-03-22
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Figure C.46: CS2:QEOP WiFi Forecast Model Validation for 2016-03-29
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C.5 CS2:QEOP Forecast Model Validation - WiFi -

Naive

Figure C.47: CS2:QEOP WiFi Naive Forecast Model Validation for 2016-03-03
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Figure C.48: CS2:QEOP WiFi Naive Forecast Model Validation for 2016-03-07

Figure C.49: CS2:QEOP WiFi Naive Forecast Model Validation for 2016-03-13
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Figure C.50: CS2:QEOP WiFi Naive Forecast Model Validation for 2016-03-18

Figure C.51: CS2:QEOP WiFi Naive Forecast Model Validation for 2016-03-22
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Figure C.52: CS2:QEOP WiFi Naive Forecast Model Validation for 2016-03-29
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A virtual three-dimensional representation of terrain surface. 235, 272, 392

Generalized Linear Model

A statistical linear model. 264, 295, 319, 392

Individual-Based Model

An umbrella term for disaggregated dynamic models that examine a system

as a collection of individual entities and their interactions. Includes Cellular

Automata (CA), Microsimulation Models (MSMs), and Agent-Based Models
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with the London Legacy Development Corporation at the Queen Elizabeth
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The networking of physical devices and sensors, enabling the automated col-

lection and exchange of data. 251, 321, 393

London Legacy Development Corporation
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developing and managing the physical assets (spaces, buildings, etc.) that

were built for the London Olympics in 2012. 147, 251, 393

Mean Relative Percentage Error

A method for calculating error between sets of unequal size. 275, 284, 393
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70, 138, 393, 398
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A programming paradigm based on the concept of discrete elements called

’objects’, which have control over their self and all data contained in them,

and can interact with other objects. 83, 139, 140, 393

Ordinary Least Squares

A method for estimating the unknown parameters in a linear regression

model. 265, 393

Overview, Design concepts, and Details

A paradigm for defining and describing an agent-based model, proposed by

Grimm et al. (2006, 2010). 83, 139, 202, 315, 393

Probabilistic Finite-State Machine

A mathematical model of computation consisting of defined states and transi-

tion rules from one state to another. A system represented as a PFSM can be

in exactly one of its defined states at any point in time, and can change state

through stochastic (i.e. probabilistically) and/or deterministic (i.e. based on

predetermined sequences) processes. 183, 202, 351, 394

Public Space Activity
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308, 313, 325, 349, 394

Public Space Use

The act of engaging in an activity in a public space. 33, 34, 65, 66, 84, 96,

120, 139, 175, 313, 314, 394
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Randow Walk Algorithm

A stochastic process that describes a path consisting of a series of random

steps in space. 88, 189, 191, 196, 394

Real-Time

Referring to an on-going event or a process which happens instantaneously.

208, 394

Real-Time Data

Any dataset or data point published at the point of capture, therefore referring

to an on-going event. 33, 34, 92, 95, 100, 120, 125, 203, 207, 250, 291, 293,

313, 314, 325, 394

Shortest Path Algorithm

An algorithm that provides a solution to the problem of finding an efficient

path between two nodes in a graph. Famous implementations include Dijk-

stra’s algorithm and the A* algorithm. 88, 189, 395

Social Forces Model

A model for simulating the movement of pedestrians in crowds and physical

environments, incorporating attracting and repelling forces, first proposed by

Helbing and Molnár (1995). 88, 135, 395

Social Media

Referring to anything related to online social media - platforms, events, data

points, APIs, etc. Often used as shorthand for social media events captured

during collection. 146, 148, 154, 208, 213, 240, 250, 254, 280, 293, 316, 395



402 GLOSSARY

Spatial Disaggregation Model

A sub-model developed in this work, used for calculating dispersed user ac-

tivity in public spaces. 133, 134, 139, 142, 147, 207, 249, 280, 282, 307, 315,

356, 395

Transport for London

Metropolitan authority responsible for mass transport systems in the

metropolitan London area. 146, 395

University College London

A teaching and research academic institution in London, UK. 251, 395

Volunteered Geospatial Information

A term for geospatial datasets constructed by members of the public through

active participation, introduced by Goodchild (2007). 109, 270, 395
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